Résumé
En mathématiques, un problème hyperbolique ou équation aux dérivées partielles hyperbolique est une classe d'équations aux dérivées partielles (EDP) modélisant des phénomènes de propagation, émergeant par exemple naturellement en mécanique. Un archétype d'équation aux dérivées partielles hyperbolique est l'équation des ondes : Les solutions des problèmes hyperboliques possèdent des propriétés ondulatoires. Si une perturbation localisée est faite sur la donnée initiale d'un problème hyperbolique, alors les points de l'espace éloignés du support de la perturbation ne ressentiront pas ses effets immédiatement. Relativement à un point espace-temps fixe, les perturbations ont une vitesse de propagation finie et se déplacent le long des caractéristiques de l'équation. Cette propriété permet de distinguer les problèmes hyperboliques des problèmes elliptiques ou paraboliques, où les perturbations des conditions initiales (ou de bord) auront des effets instantanés sur tous les points du domaine. Bien que la définition de l'hyperbolicité est fondamentalement qualitative, il existe des critères précis qui dépendent de la famille d'équations aux dérivées partielles considérée. Une équation aux dérivées partielles est hyperbolique en un point P si le problème de Cauchy est uniquement résoluble dans un voisinage de P pour toute donnée initiale fixée sur une hypersurface non caractéristique contenant P. L'équation des ondes : est un problème hyperbolique, quelle que soit la dimension. Par un changement linéaire de variables, toute équation de la forme avec F une fonction régulière et A,B,C des coefficients réels vérifiant: peut être transformée en équation des ondes, aux termes d'ordres inférieurs près qui ne sont pas représentatifs de la nature de l'équation. Cette définition est à rapprocher de celle de la conique hyperbole. Ce genre de problèmes hyperboliques du second ordre peuvent se transformer en un système hyperbolique d'équations différentielles du premier ordre tels que ceux considérés dans la suite de cet article.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.