Combinaison barycentriqueEn géométrie vectorielle, une combinaison barycentrique ou combinaison affine de vecteurs est une combinaison linéaire dont la somme des coefficients est égale à 1. L’expression s’emploie par défaut pour une somme finie, mais parfois aussi pour la limite d’une série sous réserve de convergence. Les combinaisons barycentriques correspondent ainsi aux barycentres des vecteurs vus comme des points de l’espace affine associé, et l’ensemble de ces combinaisons barycentriques constitue le sous-espace affine engendré par ces points.
Conical combinationGiven a finite number of vectors in a real vector space, a conical combination, conical sum, or weighted sum of these vectors is a vector of the form where are non-negative real numbers. The name derives from the fact that a conical sum of vectors defines a cone (possibly in a lower-dimensional subspace). The set of all conical combinations for a given set S is called the conical hull of S and denoted cone(S) or coni(S). That is, By taking k = 0, it follows the zero vector (origin) belongs to all conical hulls (since the summation becomes an empty sum).
Cône convexeEn algèbre linéaire, un cône convexe est une partie d'un espace vectoriel sur un corps ordonné qui est stable par combinaisons linéaires à coefficients strictement positifs. droite|vignette|Exemple de cône convexe (en bleu clair). À l'intérieur de celui-ci se trouve le cône convexe rouge clair qui est composé des points avec, et étant les points représentés sur la figure. Les courbes en haut à droite indiquent que les régions se prolongent à l'infini.
Somme directeEn mathématiques, et plus précisément en algèbre, le terme de somme directe désigne des ensembles munis de certaines structures, souvent construits à partir du produit cartésien d'autres ensembles du même type, et vérifiant la propriété universelle de la somme (ou « coproduit ») au sens des catégories. Produit direct (groupes)#Somme directe interne d'une famille de sous-groupes abéliensSomme directe interne de sous-groupes abéliens Soient F et F deux sous-espaces vectoriels d'un espace vectoriel E.
Standard basisIn mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. For example, in the case of the Euclidean plane formed by the pairs (x, y) of real numbers, the standard basis is formed by the vectors Similarly, the standard basis for the three-dimensional space is formed by vectors Here the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction.
Generator (mathematics)In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the creation of a larger collection of objects, called the generated set. The larger set is then said to be generated by the smaller set. It is commonly the case that the generating set has a simpler set of properties than the generated set, thus making it easier to discuss and examine.
Composantes d'un vecteurvignette|Composantes d'un vecteur dans un espace géométrique à trois dimensions, x, y et z. Dans le cas du concept géométrique classique de vecteur, il existe une identification complète entre ses « composantes » et les « coordonnées » qui le représentent. Cependant, il existe d'autres types d'espaces vectoriels (comme, par exemple, l'ensemble des polynômes d'ordre n), dans lesquels le concept de coordonnée n'a pas la généralité de l'idée de composante.
Sous-espace affine engendréEn géométrie, dans un espace affine , le sous-espace affine engendré par une partie non vide , également dénommé l'enveloppe affine de , est le plus petit sous-espace affine de contenant . Dans un espace affine, l'intersection d'une famille (non vide) de sous-espaces affines est soit l'ensemble vide, soit un sous-espace affine et l'espace lui-même est un sous-espace, ce qui justifie la définition suivante : Soient et des espaces affines et , deux parties non vides de et une partie non vide de .