Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This article proposes an exploration technique for multiagent reinforcement learning (MARL) with graph-based communication among agents. We assume that the individual rewards received by the agents are independent of the actions by the other agents, while ...
Spectral algorithms are some of the main tools in optimization and inference problems on graphs. Typically, the graph is encoded as a matrix and eigenvectors and eigenvalues of the matrix are then used to solve the given graph problem. Spectral algorithms ...
Translation elongation plays an important role in regulating protein concentrations in the cell, and dysregulation of this process has been linked to several human diseases. In this study, we use data from ribo-seq experiments to model ribosome dwell times ...
Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
EPFL2023
, ,
In this work, we develop a new framework for dynamic network flow pro-blems based on optimal transport theory. We show that the dynamic multicommodity minimum-cost network flow problem can be formulated as a multimarginal optimal transport problem, where t ...
2023
, ,
Reactive power optimization of distribution networks is traditionally addressed by physical model based methods, which often lead to locally optimal solutions and require heavy online inference time consumption. To improve the quality of the solution and r ...
State Grid Electric Power Research Inst2024
,
In this paper, we study the problem of learning Graph Neural Networks (GNNs) with Differential Privacy (DP). We propose a novel differentially private GNN based on Aggregation Perturbation (GAP), which adds stochastic noise to the GNN's aggregation functio ...
In data-parallel optimization of machine learning models, workers collaborate to improve their estimates of the model: more accurate gradients allow them to use larger learning rates and optimize faster. In the decentralized setting, in which workers commu ...
We study the privatization of distributed learning and optimization strategies. We focus on differential privacy schemes and study their effect on performance. We show that the popular additive random perturbation scheme degrades performance because it is ...
Graph Neural Networks (GNNs) have emerged as a powerful tool for learning on graphs, demonstrating exceptional performance in various domains. However, as GNNs become increasingly popular, new challenges arise. One of the most pressing is the need to ensur ...