Explore les protocoles d'évaluation dans l'apprentissage automatique, y compris le rappel, la précision, la précision et la spécificité, avec des exemples du monde réel comme les tests COVID-19.
Discute de l'évaluation des classificateurs binaires, y compris le rappel, la sensibilité, la spécificité, les courbes ROC et les mesures de performance.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Explore les critères de performance dans l'apprentissage supervisé, en mettant l'accent sur la précision, le rappel et la spécificité dans l'évaluation des modèles.
Explore les sources d'injustice dans l'apprentissage automatique, l'importance des mesures d'équité et l'évaluation des prédictions des modèles à l'aide de diverses mesures d'équité.