Couvre le concept de cohomologie de groupe, se concentrant sur les complexes de chaîne, les complexes de cochain, les produits de tasse et les anneaux de groupe.
Couvre la définition des morphismes entre les variétés algébriques affines et la construction de morphismes en utilisant des homomorphismes algébriques.
Explore la factorisation dans les domaines idéaux principaux et les anneaux noéthériens, en mettant l'accent sur le concept de fermeture intégrale et la factorisation des idéaux dans les anneaux de Dedekind.