Stirling numbers of the first kindIn mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one). The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the first kind.
Stirling numbers of the second kindIn mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of n objects into k non-empty subsets and is denoted by or . Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions. They are named after James Stirling. The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices.
Type binomialEn mathématiques, une suite de polynômes indexés par des entiers positifs dans laquelle l'indice de chaque polynôme est égal à son degré, est dit de type binomial s'il satisfait la suite d'identités De nombreuses suites de ce type existent. L'ensemble de toutes ces suites forme un groupe de Lie sous l'opération de composition ombrale. Chaque suite de type binomial peut être exprimée en termes de polynômes de Bell. Chaque suite de type binomial est une suite de Sheffer (mais la réciproque est généralement fausse : la plupart des suites de Sheffer ne sont pas de type binomial).
Nombre de BellEn mathématiques, le n-ième nombre de Bell (du nom de Eric Temple Bell) est le nombre de partitions d'un ensemble à n éléments distincts ou, ce qui revient au même, le nombre de relations d'équivalence sur un tel ensemble. Ces nombres forment la suite d'entiers de l'OEIS, dont on peut calculer à la main les premiers termes :Le premier vaut 1 car il existe exactement une partition de l'ensemble vide : la partition vide, formée d'aucune partie. En effet, ses éléments (puisqu'il n'y en a aucun) sont bien non vides et disjoints deux à deux, et de réunion vide.
Nombre de StirlingEn mathématiques, les nombres de Stirling apparaissent dans plusieurs problèmes combinatoires. Ils tirent leur nom de James Stirling, qui les a introduits au . Il en existe trois sortes, nommés les nombres de Stirling de première espèce signés et non signés, et les nombres de Stirling de seconde espèce. Diverses notations sont utilisées pour les nombres de Stirling, parmi lesquelles : nombres de Stirling de première espèce « signés » : nombres de Stirling de première espèce « non signés » : nombres de Stirling de seconde espèce : La notation avec crochets, analogue à celle utilisée pour les coefficients binomiaux, est due à Jovan Karamata, qui l'a proposée en 1935.
Cumulant (statistiques)En mathématiques et plus particulièrement en théorie des probabilités et en statistique, les cumulants d'une loi de probabilité sont des coefficients qui ont un rôle similaire à celui des moments. Les cumulants déterminent entièrement les moments et vice versa, c'est-à-dire que deux lois ont les mêmes cumulants si et seulement si elles ont les mêmes moments. L'espérance constitue le premier cumulant, la variance le deuxième et le troisième moment centré constitue le troisième cumulant.
Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.