In mathematics, the magnitude or size of a mathematical object is a property which determines whether the object is larger or smaller than other objects of the same kind. More formally, an object's magnitude is the displayed result of an ordering (or ranking) of the class of objects to which it belongs. In physics, magnitude can be defined as quantity or distance. The Greeks distinguished between several types of magnitude, including: Positive fractions Line segments (ordered by length) Plane figures (ordered by area) Solids (ordered by volume) Angles (ordered by angular magnitude) They proved that the first two could not be the same, or even isomorphic systems of magnitude. They did not consider negative magnitudes to be meaningful, and magnitude is still primarily used in contexts in which zero is either the smallest size or less than all possible sizes. Absolute value The magnitude of any number is usually called its absolute value or modulus, denoted by . The absolute value of a real number r is defined by: Absolute value may also be thought of as the number's distance from zero on the real number line. For example, the absolute value of both 70 and −70 is 70. A complex number z may be viewed as the position of a point P in a 2-dimensional space, called the complex plane. The absolute value (or modulus) of z may be thought of as the distance of P from the origin of that space. The formula for the absolute value of z = a + bi is similar to that for the Euclidean norm of a vector in a 2-dimensional Euclidean space: where the real numbers a and b are the real part and the imaginary part of z, respectively. For instance, the modulus of −3 + 4i is . Alternatively, the magnitude of a complex number z may be defined as the square root of the product of itself and its complex conjugate, , where for any complex number , its complex conjugate is . (where ). Euclidean norm A Euclidean vector represents the position of a point P in a Euclidean space. Geometrically, it can be described as an arrow from the origin of the space (vector tail) to that point (vector tip).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.