Explore le rôle des opérateurs linéaires dans la mécanique quantique et l'algèbre linéaire, en mettant l'accent sur les valeurs propres et les transformations de base.
Introduit la nécessité d'un cadre mathématique pour décrire les opérateurs linéaires sur les espaces de Hilbert de dimension infinie en mécanique quantique.
Couvre les propriétés et les théorèmes liés aux opérateurs compacts et relativement compacts, y compris le théorème de RAGE et le théorème de Kato-Rellich.