In statistics, a central tendency (or measure of central tendency) is a central or typical value for a probability distribution.
Colloquially, measures of central tendency are often called averages. The term central tendency dates from the late 1920s.
The most common measures of central tendency are the arithmetic mean, the median, and the mode. A middle tendency can be calculated for either a finite set of values or for a theoretical distribution, such as the normal distribution. Occasionally authors use central tendency to denote "the tendency of quantitative data to cluster around some central value."
The central tendency of a distribution is typically contrasted with its dispersion or variability; dispersion and central tendency are the often characterized properties of distributions. Analysis may judge whether data has a strong or a weak central tendency based on its dispersion.
The following may be applied to one-dimensional data. Depending on the circumstances, it may be appropriate to transform the data before calculating a central tendency. Examples are squaring the values or taking logarithms. Whether a transformation is appropriate and what it should be, depend heavily on the data being analyzed.
Arithmetic mean or simply, mean the sum of all measurements divided by the number of observations in the data set.
Median the middle value that separates the higher half from the lower half of the data set. The median and the mode are the only measures of central tendency that can be used for ordinal data, in which values are ranked relative to each other but are not measured absolutely.
Mode the most frequent value in the data set. This is the only central tendency measure that can be used with nominal data, which have purely qualitative category assignments.
Generalized mean A generalization of the Pythagorean means, specified by an exponent.
Geometric mean the nth root of the product of the data values, where there are n of these. This measure is valid only for data that are measured absolutely on a strictly positive scale.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En théorie des probabilités et en statistiques, la médiane est une valeur qui sépare la moitié inférieure et la moitié supérieure des termes d’une série statistique quantitative ou d’une variable aléatoire réelle. On peut la définir aussi pour une variable ordinale. La médiane est un indicateur de tendance centrale. Par comparaison avec la moyenne, elle est insensible aux valeurs extrêmes mais son calcul est un petit peu plus complexe. En particulier, elle ne peut s’obtenir à partir des médianes de sous-groupes.
En mathématiques, la moyenne arithmétique d'une liste de nombres réels est la somme des valeurs divisée par le nombre de valeurs. Il s’agit de la moyenne au sens usuel du terme, sans coefficients, l’adjectif « arithmétique » la distinguant d’autres moyennes mathématiques moins courantes. La moyenne peut être notée à l’aide de son initiale m, M ou avec la lettre grecque correspondante μ. Lorsque la moyenne est calculée sur une liste notée (x, x, ... , x), on la note habituellement à l’aide du diacritique macron, caractère unicode u+0304.
In ordinary language, an average is a single number taken as representative of a list of numbers, usually the sum of the numbers divided by how many numbers are in the list (the arithmetic mean). For example, the average of the numbers 2, 3, 4, 7, and 9 (summing to 25) is 5. Depending on the context, an average might be another statistic such as the median, or mode. For example, the average personal income is often given as the median—the number below which are 50% of personal incomes and above which are 50% of personal incomes—because the mean would be higher by including personal incomes from a few billionaires.
Inference from the particular to the general based on probability models is central to the statistical method. This course gives a graduate-level account of the main ideas of statistical inference.
Hands-on introduction to data science and machine learning. We explore recommender systems, generative AI, chatbots, graphs, as well as regression, classification, clustering, dimensionality reduction
This course provides an introduction to experimental statistics, including use of population statistics to characterize experimental results, use of comparison statistics and hypothesis testing to eva
Explore le financement d'une idée, l'analyse de données volumineuses et les bases statistiques avec des idées sur la façon d'éviter les pièges courants.
Explorer la sélection des modèles dans les statistiques, discuter des principes, des modèles probabilistes, de l'évaluation des caractéristiques et des méthodes de visualisation des données.
The concept of novelty is central to questions of creativity, innovation, and discovery. Despite the prominence in scientific inquiry and everyday discourse, there is a chronic ambiguity over its meaning and a surprising variety of empirical measures, whic ...
Emerald Publishing Limited2022
, , ,
The geometric median, an instrumental component of the secure machine learning toolbox, is known to be effective when robustly aggregating models (or gradients), gathered from potentially malicious (or strategic) users. What is less known is the extent to ...
2023
Machine learning (ML) applications are ubiquitous. They run in different environments such as datacenters, the cloud, and even on edge devices. Despite where they run, distributing ML training seems the only way to attain scalable, high-quality learning. B ...