Concepts associés (36)
Milieu de gamme (statistique)
En statistique, le milieu de gamme ou le milieu extrême d'un ensemble de valeurs de données statistiques est la moyenne arithmétique des valeurs maximales et minimales dans un ensemble de données, défini comme: Le milieu de gamme est le point médian de la gamme ; en tant que tel, c'est une mesure de la tendance centrale. Le milieu de gamme est rarement utilisé dans l'analyse statistique pratique, car il manque d'efficacité en tant qu'estimateur pour la plupart des distributions d'intérêt, car il ignore tous les points intermédiaires et manque de robustesse, car les valeurs aberrantes le modifient considérablement.
Level of measurement
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio. This framework of distinguishing levels of measurement originated in psychology and has since had a complex history, being adopted and extended in some disciplines and by some scholars, and criticized or rejected by others.
Geometric median
In geometry, the geometric median of a discrete set of sample points in a Euclidean space is the point minimizing the sum of distances to the sample points. This generalizes the median, which has the property of minimizing the sum of distances for one-dimensional data, and provides a central tendency in higher dimensions. It is also known as the 1-median, spatial median, Euclidean minisum point, or Torricelli point. The geometric median is an important estimator of location in statistics, where it is also known as the L1 estimator (after the L1 norm).
Moyenne géométrique pondérée
En statistiques, si on considère l'ensemble de données suivant : X = { x1, x2, ..., xn} et les poids associés : W = { w1, w2, ..., wn} la moyenne géométrique pondérée se calcule de la manière suivante : Si tous les poids sont égaux, la moyenne géométrique pondérée est la même que la moyenne géométrique. Il existe également des versions pondérées des autres moyennes. La plus connue étant sans doute la moyenne arithmétique pondérée, appelée simplement moyenne pondérée. Un autre exemple de moyenne pondérée est la moyenne harmonique pondérée.
Interquartile mean
The interquartile mean (IQM) (or midmean) is a statistical measure of central tendency based on the truncated mean of the interquartile range. The IQM is very similar to the scoring method used in sports that are evaluated by a panel of judges: discard the lowest and the highest scores; calculate the mean value of the remaining scores. In calculation of the IQM, only the data between the first and third quartiles is used, and the lowest 25% and the highest 25% of the data are discarded. assuming the values have been ordered.
Deviation (statistics)
In mathematics and statistics, deviation is a measure of difference between the observed value of a variable and some other value, often that variable's mean. The sign of the deviation reports the direction of that difference (the deviation is positive when the observed value exceeds the reference value). The magnitude of the value indicates the size of the difference. Errors and residuals A deviation that is a difference between an observed value and the true value of a quantity of interest (where true value denotes the Expected Value, such as the population mean) is an error.
Trimean
In statistics the trimean (TM), or Tukey's trimean, is a measure of a probability distribution's location defined as a weighted average of the distribution's median and its two quartiles: This is equivalent to the average of the median and the midhinge: The foundations of the trimean were part of Arthur Bowley's teachings, and later popularized by statistician John Tukey in his 1977 book which has given its name to a set of techniques called exploratory data analysis.
Random variate
In probability and statistics, a random variate or simply variate is a particular outcome of a random variable; the random variates which are other outcomes of the same random variable might have different values (random numbers). A random deviate or simply deviate is the difference of a random variate with respect to the distribution central location (e.g., mean), often divided by the standard deviation of the distribution (i.e., as a standard score). Random variates are used when simulating processes driven by random influences (stochastic processes).
Moyenne quasi-arithmétique
En mathématiques et en statistiques, les moyennes quasi-arithmétiques, ou moyennes de Kolmogorov ou encore moyennes selon une fonction f constituent une généralisation de la moyenne (de Hölder) d'ordre p (qui est elle-même une généralisation des moyennes usuelles : arithmétique, géométrique). Elles sont paramétrées par une fonction f. Soit une fonction d'un intervalle dans les nombres réels, continue et injective. La moyenne selon la fonction f des nombres est définie par , que l'on peut aussi écrire Il est nécessaire que soit injective pour que son inverse soit définie.
Moyenne d'ordre p
En mathématiques, la moyenne d'ordre p d'une famille de réels positifs, éventuellement pondérés, est une généralisation des moyennes arithmétique, géométrique et harmonique. Elle est également dite moyenne de Hölder, à cause de son lien avec la norme d'ordre p, ou norme de Hölder. Soit p un nombre réel non nul. On définit la moyenne d'ordre p des réels strictement positifs x, ...

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.