Explore Ant Colony Optimization (ACO) pour le routage et l'optimisation, en discutant d'heuristique constructive, de recherche locale, de mécanismes phéromones et d'applications du monde réel.
Explore l'auto-organisation dans les systèmes naturels et les stratégies de recherche de nourriture des fourmis, y compris les algorithmes Traveling Salesman Problem et Ant Colony Optimization.
Explore l'apprentissage multi-tâches pour l'optimisation accélérée des réactions chimiques, les défis de mise en évidence, les workflows automatisés et les algorithmes d'optimisation.
Explore le compromis entre la complexité et le risque dans les modèles d'apprentissage automatique, les avantages de la surparamétrisation et le biais implicite des algorithmes d'optimisation.
Explorer la résolution Connect Four en utilisant la théorie du jeu et l'optimisation des algorithmes, en comparant minimax, taille alpha-bêta, et recherche d'arbre Monte-Carlo.
Couvre la logistique générale, la justification des cours, les conditions préalables, l'organisation, les crédits, la charge de travail, le classement et le contenu des cours, y compris les renseignements sur les essaims, les stratégies de recherche de nourriture et les phénomènes collectifs.
Explore Feedback Equilibrium Rechercher un contrôle robuste dans les systèmes cyberphysiques, en mettant l'accent sur la fiabilité, l'évolutivité et la performance.