Équivalence de MoritaEn algèbre, et plus précisément en théorie des anneaux, l'équivalence de Morita est une relation entre anneaux. Elle est nommée d'après le mathématicien japonais Kiiti Morita qui l'a introduite dans un article de 1958. L'étude d'un anneau consiste souvent à explorer la catégorie des modules sur cet anneau. Deux anneaux sont en équivalence de Morita précisément lorsque leurs catégories de modules sont équivalentes. L'équivalence de Morita présente surtout un intérêt dans l'étude des anneaux non commutatifs.
Module indécomposableEn algèbre abstraite, un module est indécomposable s'il est non nul et ne peut pas être écrit comme une somme directe de deux sous-modules non nuls. L'indécomposabilité des modules est une notion plus faible que leur simplicité (qui est aussi parfois appelée irréductibilité). Une somme directe d'indécomposables est dite complètement décomposable, notion qui est donc plus faible que d'être semi-simple (somme directe de modules simples).
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Preadditive categoryIn mathematics, specifically in , a preadditive category is another name for an Ab-category, i.e., a that is over the , Ab. That is, an Ab-category C is a such that every hom-set Hom(A,B) in C has the structure of an abelian group, and composition of morphisms is bilinear, in the sense that composition of morphisms distributes over the group operation. In formulas: and where + is the group operation. Some authors have used the term additive category for preadditive categories, but here we follow the current trend of reserving this term for certain special preadditive categories (see below).
Radical de JacobsonEn algèbre, le radical de Jacobson d'un anneau commutatif est l'intersection de ses idéaux maximaux. Cette notion est due à Nathan Jacobson qui le premier en a fait l'étude systématique. Un élément x appartient au radical de Jacobson de l'anneau A si et seulement si 1 + ax est inversible pour tout a de A. Notons J le radical de Jacobson de l'anneau commutatif A et exploitons le fait que (d'après le théorème de Krull) 1 + ax est non inversible si et seulement s'il appartient à un idéal maximal.
Algèbre sur un corpsEn mathématiques, et plus précisément en algèbre générale, une algèbre sur un corps commutatif K, ou simplement une K-algèbre, est une structure algébrique (A, +, ·, ×) telle que : (A, +, ·) est un espace vectoriel sur K ; la loi × est définie de A × A dans A (loi de composition interne) ; la loi × est bilinéaire.
Idempotent (ring theory)In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring is an element a such that a2 = a. That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... = an for any positive integer n. For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring.
Lemme de SchurEn mathématiques et plus précisément en algèbre linéaire, le lemme de Schur est un lemme technique utilisé particulièrement dans la théorie de la représentation des groupes. Il a été démontré en 1907 par Issai Schur dans le cadre de ses travaux sur la théorie des représentations d'un groupe fini. Ce lemme est à la base de l'analyse d'un caractère d'une représentation d'un groupe fini ; il permet, par exemple, de caractériser les groupes abéliens finis.
Semi-local ringIn mathematics, a semi-local ring is a ring for which R/J(R) is a semisimple ring, where J(R) is the Jacobson radical of R. The above definition is satisfied if R has a finite number of maximal right ideals (and finite number of maximal left ideals). When R is a commutative ring, the converse implication is also true, and so the definition of semi-local for commutative rings is often taken to be "having finitely many maximal ideals".
Diviseur de zéroEn mathématiques, dans un anneau, un diviseur de zéro est un élément non nul dont le produit par un certain élément non nul est égal à zéro. Soient un anneau et tel que , où est l'élément neutre pour la loi . On dit que est un diviseur de zéro à gauche dans si On dit que est un diviseur de zéro à droite dans si On dit que est un diviseur de zéro dans si est un diviseur de zéro à gauche dans ou un diviseur de zéro à droite dans . Un élément de est dit régulier s'il n'est ni nul, ni diviseur de zéro.