Résumé
En mathématiques et plus précisément en algèbre linéaire, le lemme de Schur est un lemme technique utilisé particulièrement dans la théorie de la représentation des groupes. Il a été démontré en 1907 par Issai Schur dans le cadre de ses travaux sur la théorie des représentations d'un groupe fini. Ce lemme est à la base de l'analyse d'un caractère d'une représentation d'un groupe fini ; il permet, par exemple, de caractériser les groupes abéliens finis. Représentation de groupe Le lemme de Schur représente l'un des fondements de la théorie des représentations d'un groupe fini et de l'analyse de l'algèbre des modules semi-simples. Une représentation d'un groupe G dans un espace vectoriel E de dimension finie n est la donnée d'un morphisme ρ de G dans le groupe linéaire GL(E) des automorphismes de E. Cette approche initiée par Ferdinand Georg Frobenius dans un article de 1896 s'avère fructueuse. Trois ans plus tard, Heinrich Maschke démontre que toute représentation est somme directe de représentations irréductibles. Une représentation (E, ρ) est dite irréductible si les sous-espaces E et {0} sont distincts et sont les deux seuls sous-espaces stables par les automorphismes ρ(g), g décrivant G. Le théorème de Maschke énonce que, si la caractéristique de K ne divise pas l'ordre de G, alors toute représentation de G est somme directe de représentations irréductibles. Connaître toutes les représentations d'un groupe fini revient donc à connaître ses représentations irréductibles, les autres s'obtiennent par somme directe. Le lemme de Schur est un lemme technique essentiel pour la démonstration d'un résultat majeur : les représentations irréductibles s'identifient par leur caractère, et ces caractères sont orthogonaux deux à deux. Cette approche apporte des résultats importants pour la théorie des groupes finis. Elle a finalement permis la classification des groupes simples, mais aussi la démonstration de résultats comme une conjecture de William Burnside stipulant que tout groupe fini d'ordre impair est résoluble.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
PHYS-431: Quantum field theory I
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
Afficher plus