Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la Décomposition de la Valeur Singulière et son rôle dans l'apprentissage non supervisé et la réduction de dimensionnalité, en mettant l'accent sur ses propriétés et applications.
Explore PCA et LDA pour la réduction de dimensionnalité linéaire dans les données, en mettant l'accent sur les techniques de clustering et de séparation de classe.
Explore la modélisation des signaux neurobiologiques, en se concentrant sur les pics, la vitesse de tir, plusieurs neurones d'état, et l'estimation des paramètres.
Explore les principes fondamentaux de la physique quantique, y compris les états quantiques, les transformations unitaires, les espaces Hilbert et les processus de mesure.
Explore les techniques d'apprentissage non supervisées pour réduire les dimensions des données, en mettant l'accent sur l'APC, l'ADL et l'APC du noyau.
Introduit l'analyse de corrélation canonique pour trouver des caractéristiques communes dans des ensembles de données séparés, s'étendant aux données multimodales et aux caractéristiques non linéaires.
Explore la décomposition de la valeur singulière et l'analyse des composantes principales pour la réduction de la dimensionnalité, avec des applications de visualisation et d'efficacité.