Concept

Informant (statistics)

Résumé
In statistics, the informant (or score) is the gradient of the log-likelihood function with respect to the parameter vector. Evaluated at a particular point of the parameter vector, the score indicates the steepness of the log-likelihood function and thereby the sensitivity to infinitesimal changes to the parameter values. If the log-likelihood function is continuous over the parameter space, the score will vanish at a local maximum or minimum; this fact is used in maximum likelihood estimation to find the parameter values that maximize the likelihood function. Since the score is a function of the observations that are subject to sampling error, it lends itself to a test statistic known as score test in which the parameter is held at a particular value. Further, the ratio of two likelihood functions evaluated at two distinct parameter values can be understood as a definite integral of the score function. The score is the gradient (the vector of partial derivatives) of , the natural logarithm of the likelihood function, with respect to an m-dimensional parameter vector . This differentiation yields a row vector, and indicates the sensitivity of the likelihood (its derivative normalized by its value). In older literature, "linear score" may refer to the score with respect to infinitesimal translation of a given density. This convention arises from a time when the primary parameter of interest was the mean or median of a distribution. In this case, the likelihood of an observation is given by a density of the form . The "linear score" is then defined as While the score is a function of , it also depends on the observations at which the likelihood function is evaluated, and in view of the random character of sampling one may take its expected value over the sample space. Under certain regularity conditions on the density functions of the random variables, the expected value of the score, evaluated at the true parameter value , is zero. To see this, rewrite the likelihood function as a probability density function , and denote the sample space .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-413: Statistics for data science
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Publications associées (36)
Concepts associés (4)
Test du multiplicateur de Lagrange
Le test du multiplicateur de Lagrange (LM) ou test de score ou test de Rao est un principe général pour tester des hypothèses sur les paramètres dans un cadre de vraisemblance. L'hypothèse sous le test est exprimée comme une ou plusieurs contraintes sur les valeurs des paramètres. La statistique du test LM ne nécessite une maximisation que dans cet espace contraint des paramètres (en particulier si l'hypothèse à tester est de la forme alors ).
Maximum de vraisemblance
En statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Test du rapport de vraisemblance
En statistiques, le test du rapport de vraisemblance est un test statistique qui permet de tester un modèle paramétrique contraint contre un non contraint. Si on appelle le vecteur des paramètres estimés par la méthode du maximum de vraisemblance, on considère un test du type : contre On définit alors l'estimateur du maximum de vraisemblance et l'estimateur du maximum de vraisemblance sous .
Afficher plus