Concept

H-espace

Résumé
En mathématiques, un H-espace est une version d'une généralisation de la notion de groupe topologique, dans laquelle les axiomes d' sont supprimés. Un H-espace est constitué d'un espace topologique X, ainsi que d'un élément e de X et d'une application continue , tel que et les applications et sont toutes les deux homotopes à l'application identité relativement à e. Cet espace peut être considéré comme un espace topologique pointé avec une multiplication continue pour laquelle le point de base est un , à homotopie près préservant le point de base. On dit qu'un espace topologique X est un H-espace s'il existe e et tels que le triplet est un H-espace comme dans la définition ci-dessus. Alternativement, un H-espace peut être défini sans imposer que le point base e soit fixé par les homotopies, ou en exigeant que e soit l'identité, sans aucune considération homotopique. Dans le cas d'un CW-complexe, ces trois définitions sont en fait équivalentes. La définition standard du groupe fondamental, ainsi que le fait qu'il s'agit d'un groupe, peut être reformulée en disant que l'espace des lacets d'un espace topologique pointé a la structure d'un H-groupe, équipé des opérations standard de concaténation et d'inversion. De plus, une application continue préservant les points de base de l'espace topologique pointé induit un H-morphisme des espaces de lacets correspondants ; cela reflète le morphisme de groupes sur les groupes fondamentaux induit par une application continue. Il est immédiat de vérifier que, étant donné une équivalence d'homotopie pointée d'un H-espace à un espace topologique pointé, il existe une structure naturelle de H-espace sur ce dernier. Ainsi, l'existence d'une structure de H-espace sur un espace donné ne dépend que de son type d'homotopie pointée. La structure multiplicative d'un espace H ajoute une structure à ses groupes d'homologie et de cohomologie. Par exemple, l' d'un H-espace connexe par arcs dont les modules de cohomologie sont libres de type fini est une algèbre de Hopf.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.