MATH-410: Riemann surfacesThis course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
FIN-417: Quantitative risk managementThis course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
MATH-124: Geometry for architects ICe cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
MATH-657: Deformation TheoryWe will study classical and modern deformation theory of schemes and coherent sheaves. Participants should have a solid background in scheme-theory, for example being familiar with the first 3 chapter
MATH-658: Vanishing cycles and perverse sheavesThis course will explain the theory of vanishing cycles and perverse sheaves. We will see how the Hard Lefschetz theorem can be proved using perverse sheaves. If we have more time we will try to see t
MATH-643: Applied l-adic cohomologyIn this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb