Clôture algébriqueEn mathématiques, une clôture algébrique d'un corps commutatif K est une extension algébrique L de K qui est algébriquement close, c'est-à-dire telle que tout polynôme de degré supérieur ou égal à un, à coefficients dans L, admet au moins une racine dans L. Une clôture algébrique d'un corps K peut être vue comme une extension algébrique maximale de K. En effet, il suffit de remarquer que si L est une extension algébrique de K, alors une clôture algébrique de L est également une clôture algébrique de K, donc L est contenu dans une clôture algébrique de K.
Corps commutatifvignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.