En mathématiques, une clôture algébrique d'un corps commutatif K est une extension algébrique L de K qui est algébriquement close, c'est-à-dire telle que tout polynôme de degré supérieur ou égal à un, à coefficients dans L, admet au moins une racine dans L. Une clôture algébrique d'un corps K peut être vue comme une extension algébrique maximale de K. En effet, il suffit de remarquer que si L est une extension algébrique de K, alors une clôture algébrique de L est également une clôture algébrique de K, donc L est contenu dans une clôture algébrique de K. Une clôture algébrique de K est également un corps algébriquement clos minimal (pour l’inclusion) contenant K, puisque si M est un corps algébriquement clos contenant K alors, parmi les éléments de M, ceux qui sont algébriques sur K forment une clôture algébrique de K. Une clôture algébrique d'un corps K a le même cardinal que K si K est infini ; elle est dénombrable si K est fini. En dehors du cas où K est séparablement clos (donc algébriquement clos en caractéristique nulle), entre deux clôtures algébriques de K il n'y a pas unicité d'isomorphismes. Il vaut donc mieux éviter l’expression « la clôture algébrique » et privilégier l’article indéfini « une » (une autre façon de le voir est qu’il n’existe pas de foncteur de la catégorie des corps dans elle-même qui envoie tout corps K sur une clôture algébrique de K). L'existence d'une clôture algébrique pour tout corps nécessite l'axiome du choix. D'après le théorème fondamental de l'algèbre, le corps des nombres complexes est une clôture algébrique du corps des nombres réels. Le corps des nombres algébriques est une clôture algébrique du corps des nombres rationnels. Une clôture algébrique d'un corps fini d'ordre premier p est un corps dénombrable. Pour tout entier naturel n non nul, il contient un et un seul sous-corps F d'ordre p, et il est égal à la réunion de tous ces sous-corps (ou plus savamment : leur limite inductive, avec F ⊂ F si d est un diviseur de n).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.