Groupe symétriqueEn mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même. N'est traité dans le présent article, à la suite de la définition générale, que le cas E fini. Soit E un ensemble. On appelle groupe symétrique de E l'ensemble des applications bijectives de E sur E muni de la composition d'applications (la loi ∘). On le note S(E) ou (ce caractère est un S gothique). Un cas particulier courant est le cas où E est l'ensemble fini {1, 2, .
Groupe cycliqueEn mathématiques et plus précisément en théorie des groupes, un groupe cyclique est un groupe qui est à la fois fini et monogène, c'est-à-dire qu'il existe un élément a du groupe tel que tout élément du groupe puisse s'exprimer sous forme d'un multiple de a (en notation additive, ou comme puissance en notation multiplicative) ; cet élément a est appelé générateur du groupe. Il n'existe, à isomorphisme près, pour tout entier n > 0, qu'un seul groupe cyclique d'ordre n : le groupe quotient Z/nZ — également noté Z ou C — de Z par le sous-groupe des multiples de n.
Groupe simpleEn mathématiques, un groupe simple est un groupe non trivial qui ne possède pas de sous-groupe distingué autre que lui-même et son sous-groupe trivial. Un groupe est dit simple s'il a exactement deux sous-groupes distingués : ( étant l’élément neutre du groupe) et lui-même. Quelques exemples de groupes simples : Les seuls groupes abéliens simples sont les groupes finis d'ordre premier (ces groupes sont cycliques). Le groupe SO_3(R) des matrices spéciales orthogonales d'ordre 3 à coefficients réels est simple.
Théorème d'Abel (algèbre)En mathématiques et plus précisément en algèbre, le théorème d'Abel, parfois appelé théorème d'Abel-Ruffini ou encore théorème de Ruffini, indique que pour tout entier n supérieur ou égal à 5, il n'existe pas de formule générale exprimant « par radicaux » les racines d'un polynôme quelconque de degré n, c'est-à-dire de formule n'utilisant que les coefficients, la valeur 1, les et l'extraction des racines n-ièmes.
Groupe (mathématiques)vignette|Les manipulations possibles du Rubik's Cube forment un groupe. En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition.
Groupe résolubleEn mathématiques, un groupe résoluble est un groupe qui peut être construit à partir de groupes abéliens par une suite finie d'extensions. Théorème d'Abel (algèbre) La théorie des groupes tire son origine de la recherche de solutions générales (ou de leur absence) pour les racines des polynômes de degré 5 ou plus. Le concept de groupe résoluble provient d'une propriété partagée par les groupes d'automorphismes des polynômes dont les racines peuvent être exprimées en utilisant seulement un nombre fini d'opérations élémentaires (racine n-ième, addition, multiplication, ).
Racine d'un nombreEn mathématiques, une racine n-ième d'un nombre a est un nombre b tel que b = a, où n est un entier naturel non nul. Selon que l'on travaille dans l'ensemble des réels positifs, l'ensemble des réels ou l'ensemble des complexes, le nombre de racines n-ièmes d'un nombre peut être 0, 1, 2 ou n. Pour un nombre réel a positif, il existe un unique réel b positif tel que b = a. Ce réel est appelé la racine n-ième de a (ou racine n-ième principale de a) et se note avec le symbole radical () ou a.
Corps finiEn mathématiques et plus précisément en algèbre, un corps fini est un corps commutatif qui est par ailleurs fini. À isomorphisme près, un corps fini est entièrement déterminé par son cardinal, qui est toujours une puissance d'un nombre premier, ce nombre premier étant sa caractéristique. Pour tout nombre premier p et tout entier non nul n, il existe un corps de cardinal pn, qui se présente comme l'unique extension de degré n du corps premier Z/pZ.
Théorème fondamental de la théorie de GaloisEn mathématiques et plus précisément en algèbre commutative, le théorème fondamental de la théorie de Galois établit une correspondance entre les extensions intermédiaires d'une extension finie de corps et leurs groupes de Galois, dès lors que l'extension est galoisienne, c’est-à-dire séparable et normale. Soient L une extension galoisienne finie de K et G son groupe de Galois. Pour tout sous-groupe H de G, on note LH le sous-corps de L constitué des éléments fixés par chaque élément de H.
Équation quartiqueEn mathématiques, une équation quartique est une équation polynomiale de degré 4. Les équations quartiques ont été résolues dès que furent connues les méthodes de résolution des équations du troisième degré. Ont été développées successivement la méthode de Ferrari et la méthode de Descartes. La méthode de Lagrange, décrite ci-dessous, est issue des propriétés des polynômes symétriques construits à partir des n racines d'un polynôme de degré n. La méthode de résolution de l'équation quartique est établie depuis déjà deux siècles par Ludovico Ferrari (1522-1565).