vignette|Tracé du module de la fonction gamma (son prolongement analytique) dans le plan complexe.
En mathématiques, et plus précisément en analyse, une fonction analytique est une fonction d'une variable réelle ou complexe qui est développable en série entière au voisinage de chacun des points de son domaine de définition, c'est-à-dire que pour tout de ce domaine, il existe une suite donnant une expression de la fonction, valable pour tout assez proche de , sous la forme d'une série convergente :
Toute fonction analytique est dérivable de dérivée analytique, ce qui implique que toute fonction analytique est indéfiniment dérivable, mais la réciproque est fausse en analyse réelle. En revanche, en analyse complexe, toute fonction simplement dérivable sur un ouvert est analytique et vérifie de nombreuses autres propriétés.
Fonction holomorphe
Qu'elle soit de variable réelle ou complexe, une fonction analytique sur un ouvert connexe et non identiquement nulle a ses zéros isolés. Cette propriété induit l'unicité du prolongement analytique sur tout ouvert connexe.
Soit une fonction d'une variable complexe, où est un ouvert de . On dit que la fonction est analytique sur si pour tout , il existe une suite de nombres complexes et un réel tel que, pour tout , c'est-à-dire pour tout dans le disque (ouvert) de centre et de rayon , supposé inclus dans , la fonction s'exprime sous forme de la série convergente :
Autrement dit, une fonction est analytique si elle est développable en série entière au voisinage de chaque point de son ensemble ouvert de définition.
La même définition s'applique à une fonction de variable réelle , définie sur un intervalle ouvert borné ou non, en remplaçant le disque par l'intervalle ouvert .
Une fonction analytique sur tout entier est dite entière.
Si une fonction de la variable complexe est analytique alors elle est holomorphe. Il existe d'ailleurs une réciproque à cette proposition : toute fonction holomorphe sur un ouvert est analytique sur celui-ci.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to the theory of complex analysis, Fourier series and Fourier transforms (including for tempered distributions), the Laplace transform, and their uses to solve ordinary
Le cours étudie les concepts fondamentaux de l'analyse complexe et de l'analyse de Laplace en vue de leur utilisation
pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
Le rayon de convergence d'une série entière est le nombre réel positif ou +∞ égal à la borne supérieure de l'ensemble des modules des nombres complexes où la série converge (au sens classique de la convergence simple): Si R est le rayon de convergence d'une série entière, alors la série est absolument convergente sur le disque ouvert D(0, R) de centre 0 et de rayon R. Ce disque est appelé disque de convergence. Cette convergence absolue entraine ce qui est parfois qualifié de convergence inconditionnelle : la valeur de la somme en tout point de ce disque ne dépend pas de l'ordre des termes.
vignette|Une grille et son image par f d'une fonction holomorphe. En analyse complexe, une fonction holomorphe est une fonction à valeurs complexes, définie et dérivable en tout point d'un sous-ensemble ouvert du plan complexe C. Cette condition est beaucoup plus forte que la dérivabilité réelle. Elle entraîne (via la théorie de Cauchy) que la fonction est analytique : elle est infiniment dérivable et est égale, au voisinage de tout point de l'ouvert, à la somme de sa série de Taylor.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...
Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...
Situational awareness strategies are essential for the reliable and secure operation of the electric power grid which represents critical infrastructure in modern society. With the rise of converter-interfaced renewable generation and the consequent shift ...