Concept

Stable count distribution

In probability theory, the stable count distribution is the conjugate prior of a one-sided stable distribution. This distribution was discovered by Stephen Lihn (Chinese: 藺鴻圖) in his 2017 study of daily distributions of the S&P 500 and the VIX. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it. Of the three parameters defining the distribution, the stability parameter is most important. Stable count distributions have . The known analytical case of is related to the VIX distribution (See Section 7 of ). All the moments are finite for the distribution. Its standard distribution is defined as where and Its location-scale family is defined as where , , and In the above expression, is a one-sided stable distribution, which is defined as following. Let be a standard stable random variable whose distribution is characterized by , then we have where . Consider the Lévy sum where , then has the density where . Set , we arrive at without the normalization constant. The reason why this distribution is called "stable count" can be understood by the relation . Note that is the "count" of the Lévy sum. Given a fixed , this distribution gives the probability of taking steps to travel one unit of distance. Based on the integral form of and , we have the integral form of as Based on the double-sine integral above, it leads to the integral form of the standard CDF: where is the sine integral function. In "Series representation", it is shown that the stable count distribution is a special case of the Wright function (See Section 4 of ): This leads to the Hankel integral: (based on (1.4.3) of ) where Ha represents a Hankel contour. Another approach to derive the stable count distribution is to use the Laplace transform of the one-sided stable distribution, (Section 2.4 of ) where . Let , and one can decompose the integral on the left hand side as a product distribution of a standard Laplace distribution and a standard stable count distribution, where .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.