Résumé
thumb|Spirale d'Archimède d'équation r = t/π. thumb|Spirale d'Archimède représentée sur un graphe polaire. La spirale d'Archimède est la courbe d'équation polaire suivante : La spirale d'Archimède est la courbe décrite par un point en déplacement uniforme sur une droite en rotation elle-même uniforme autour d'un point. Le sillon des disques vinyle est une spirale d'Archimède. La spirale dessinée ci-contre est une spirale définie pour des angles positifs. La spirale d'équation r = –t/π définie pour des angles négatifs serait l'image de la précédente par une symétrie d'axe (Ox). Elle aurait la même forme mais tournerait dans le sens contraire. La courbe d'équation polaire : est aussi une spirale d'Archimède. C'est la spirale précédente ayant subi une rotation d'angle –b/a. On peut envisager une construction mécanique d'une spirale d'Archimède en posant la feuille de papier sur un socle muni d'un mouvement de rotation uniforme autour d'un axe vertical passant par O. Le crayon, lui, s'éloigne du centre O suivant un mouvement rectiligne uniforme. Les deux mouvements peuvent être liés par un système de vis sans fin. L'aire balayée par un rayon sur l'intervalle [0, θ] est Attention, cela ne correspond pas à l'aire de la spirale car le rayon risque de balayer plusieurs fois la même portion de plan. thumb|Trisection de l'angle. Une spirale d'Archimède ne permet pas de résoudre « le » problème de la trisection de l'angle : pour un angle θ donné, il est impossible de construire à la règle et au compas l'angle θ/3. En revanche, il est possible de construire l'angle θ/3 avec une règle, un compas ET une spirale d'Archimède : il suffit de repérer le point M de la spirale associé à l'angle θ, de construire un cercle de centre O et de rayon OM/3. Ce cercle coupe la spirale en un point P associé à l'angle θ/3. La rectification du cercle est un problème analogue à sa quadrature. Chercher la quadrature du cercle, c'est chercher le carré qui a même aire que celle d'un cercle donné.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.