Spirale de Fermatvignette|Les deux branches de la spirale de Fermat d'équation ρ2 = θ (noire pour ρ positif et rouge pour ρ négatif) Une spirale de Fermat est une courbe plane d'équation polaire: Son nom est une référence au mathématicien Pierre de Fermat qui la décrit dans une lettre à Marin Mersenne en 1636 et présente sa propriété d'aire balayée par un rayon. Cette courbe a aussi été étudiée par Pierre Varignon en 1704 dans le cadre de son étude générale des spirales d'équation polaire .
Spirale logarithmiqueUne spirale logarithmique est une courbe dont l'équation polaire est de la forme : où a et b sont des réels strictement positifs (b différent de 1) et la fonction exponentielle de base b. Cette courbe étudiée au a suscité l'admiration de Jacques Bernoulli pour ses propriétés d'invariance. On la trouve dans la nature, par exemple dans la croissance de coquillages ou pour la disposition des graines de tournesol. Le nom de spirale logarithmique lui est donné par Pierre Varignon.
Spirale d'orvignette|La spirale d'or est autosimilaire, elle se répète à l'infini lorsqu'elle est agrandie. thumb|La spirale de Fibonacci (courbe verte constituée de l'ensemble de quart de cercles tangents à chaque carré) est une approximation de la spirale d'or (courbe rouge). Les parties jaunes indiquent les portions où les deux courbes se superposent. Les côtés des carrés successifs respectent la proportion d'or. En géométrie, une spirale d'or est une spirale logarithmique avec un facteur de croissance de , appelé nombre d'or.
Régularités naturellesLes régularités dans la nature sont des formes répétées que l'on trouve dans le monde naturel, telles que les spirales, les arbres, la disposition de traits ou de fentes, les chants d'oiseau. Chaque régularité peut être simulée mathématiquement et peut s'expliquer à un niveau physique, chimique ou biologique (sélection naturelle). Cette branche de la mathématique applique des simulations informatiques à une grande gamme de formes. Le philosophe grec Platon (env. 427 – env.
Spirale d'Archimèdethumb|Spirale d'Archimède d'équation r = t/π. thumb|Spirale d'Archimède représentée sur un graphe polaire. La spirale d'Archimède est la courbe d'équation polaire suivante : La spirale d'Archimède est la courbe décrite par un point en déplacement uniforme sur une droite en rotation elle-même uniforme autour d'un point. Le sillon des disques vinyle est une spirale d'Archimède. La spirale dessinée ci-contre est une spirale définie pour des angles positifs.
Triskèlevignette|droite|Exemple de triskèle lévogyre. vignette|Exemple de triskèle dextrogyre Le triskèle, également orthographié triskell ou triskel (en breton) ou appelé aussi triskelion ou triscèle (du grec , « triskélès » qui signifie à « trois jambes »), est un symbole représentant trois jambes humaines, ou trois spirales entrecroisées, ou encore tout autre symbole avec trois protubérances évoquant une symétrie de groupe cyclique. Le sens de rotation du triskèle peut être horaire (dextrogyre) ou anti-horaire (lévogyre), revêtant une signification différente selon le contexte.
Liste de spirales mathématiquesCette liste de spirales mathématiques inventorie les noms, les images et quelques propriétés de spirales définies en mathématiques et dessinées en dimension deux ou trois. Remarque : dans toute la suite, les équations données en coordonnées sphériques utilisent les notations suivantes ρ pour la distance au pôle; θ pour la colatitude; φ pour la longitude. traduit de l’original en espagnol de 1899, revu et très augmenté. Réédition: dans les Obras sobre Matemática, volume V, 1908–1915; Chelsea Publishing Co, New York, 1971; Éditions Jacques Gabay, Paris, 1995 .
CourbeEn mathématiques, plus précisément en géométrie, une courbe, ou ligne courbe, est un objet du plan ou de l'espace usuel, similaire à une droite mais non nécessairement linéaire. Par exemple, les cercles, les droites, les segments et les lignes polygonales sont des courbes. La notion générale de courbe se décline en plusieurs objets mathématiques ayant des définitions assez proches : arcs paramétrés, lignes de niveau, sous-variétés de .
Nombre d'orvignette|upright=1.2|La proportion définie par a et b est dite d'« extrême et moyenne raison » lorsque a est à b ce que est à a, soit : lorsque Le rapport a/b est alors égal au nombre d'or (phi). Le nombre d'or (ou section dorée, proportion dorée, ou encore divine proportion) est une proportion, définie initialement en géométrie comme l'unique rapport a/b entre deux longueurs a et b telles que le rapport de la somme a + b des deux longueurs sur la plus grande (a) soit égal à celui de la plus grande (a) sur la plus petite (b), ce qui s'écrit : avec Le découpage d'un segment en deux longueurs vérifiant cette propriété est appelé par Euclide découpage en « extrême et moyenne raison ».
Coordonnées polairesvignette|upright=1.4|En coordonnées polaires, la position du point M est définie par la distance r et l'angle θ. vignette|upright=1.4|Un cercle découpé en angles mesurés en degrés. Les coordonnées polaires sont, en mathématiques, un système de coordonnées curvilignes à deux dimensions, dans lequel chaque point du plan est entièrement déterminé par un angle et une distance. Ce système est particulièrement utile dans les situations où la relation entre deux points est plus facile à exprimer en termes d’angle et de distance, comme dans le cas du pendule.