Independence-friendly logicIndependence-friendly logic (IF logic; proposed by Jaakko Hintikka and Gabriel Sandu in 1989) is an extension of classical first-order logic (FOL) by means of slashed quantifiers of the form and , where is a finite set of variables. The intended reading of is "there is a which is functionally independent from the variables in ". IF logic allows one to express more general patterns of dependence between variables than those which are implicit in first-order logic.
Branching quantifierIn logic a branching quantifier, also called a Henkin quantifier, finite partially ordered quantifier or even nonlinear quantifier, is a partial ordering of quantifiers for Q ∈ {∀,∃}. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable ym bound by a quantifier Qm depends on the value of the variables y1, ..., ym−1 bound by quantifiers Qy1, ..., Qym−1 preceding Qm. In a logic with (finite) partially ordered quantification this is not in general the case.
Logique linéairevignette|Arbre de résolution linéaire En logique mathématique et plus précisément en théorie de la démonstration, la logique linéaire est un système formel inventé par le logicien Jean-Yves Girard en 1987. Du point de vue logique, la logique linéaire décompose et analyse les logiques classique et intuitionniste. Du point de vue calculatoire, elle est un système de type pour le lambda-calcul permettant de spécifier certains usages des ressources. La logique classique n'étudie pas les aspects les plus élémentaires du raisonnement.
Sémantique formelle (logique)En logique, la sémantique de la logique est l'étude de la sémantique, ou l'interprétation, des langages formels et naturels qui, en général, tentent de saisir la notion pré-théorique de déduction. Parmi les tâches des logiciens figure la fourniture de signification aux propositions. Avant l'avènement de la logique moderne, l'Organon d'Aristote, et en particulier De Interpretatione a servi de base à la compréhension de l'importance de la logique.
Principe de compositionnalitéEn mathématiques, sémantique, et philosophie du langage, le principe de compositionnalité est le principe selon lequel la signification d'une expression complexe est définie par les significations des expressions la composant, et par les règles employées pour les combiner. Des techniques de raisonnement continu exploitent la compositionnalité pour analyser les systèmes à grande échelle de manière différentielle. Le principe de compositionnalité établit que dans une phrase significative, si les parties lexicales sont retirées de la phrase, ce qu'il en reste seront les règles de composition.
Sémantique des langages de programmationEn informatique théorique, la sémantique formelle (des langages de programmation) est l’étude de la signification des programmes informatiques vus en tant qu’objets mathématiques. Comme en linguistique, la sémantique, appliquée aux langages de programmation, désigne le lien entre un signifiant, le programme, et un signifié, objet mathématique. L'objet mathématique dépend des propriétés à connaître du programme. La sémantique est également le lien entre : le langage signifiant : le langage de programmation le langage signifié : logique de Hoare, automates.