Explore l'application de l'apprentissage automatique en médecine, en mettant l'accent sur l'interprétabilité, la variabilité entre les patients et la recherche d'équations transparentes dans les modèles médicaux.
Explore l'évolution de la modélisation générative, depuis les méthodes traditionnelles jusqu'aux progrès de pointe, en passant par les défis à relever et en envisageant les possibilités futures.
Couvre une introduction mathématique à l'apprentissage profond, y compris les défis, la puissance des classificateurs linéaires, l'échelle du modèle et les aspects théoriques.
Explore l'analyse du modèle neuronal en PNL, couvrant les études d'évaluation, de sondage et d'ablation pour comprendre le comportement et l'interprétabilité du modèle.
Explore le concept de réseaux neuronaux explicables et leur importance dans l'amélioration de l'interprétabilité des modèles, en particulier dans la finance et l'évaluation des prix des maisons.
Explore les défis de l'apprentissage profond pour les véhicules autonomes, en mettant l'accent sur la modélisation du comportement social et la prévision de trajectoire réalisable.
Se penche sur les perspectives géométriques des modèles d'apprentissage profond, explorant leur vulnérabilité aux perturbations et l'importance de la robustesse et de l'interprétabilité.