Explore l'apprentissage profond pour les véhicules autonomes, couvrant la perception, l'action et les prévisions sociales dans le contexte des technologies de capteurs et des considérations éthiques.
Plongez dans l'application de l'intelligence artificielle dans la finance, en explorant des outils tels que les réseaux neuronaux et les techniques bayésiennes, les cas d'utilisation réussis dans la détection des fraudes et les robots-conseillers, et l'importance de l'interprétabilité dans les modèles d'apprentissage automatique.
Explore le paradigme de l'apprentissage profond, y compris les défis, les réseaux neuronaux, la robustesse, l'équité, l'interprétabilité et l'efficacité énergétique.
Explore les extrêmes de la capacité d'interprétation dans l'apprentissage automatique, en mettant l'accent sur les arbres de décision clairsemés et les réseaux neuraux interprétables.
Explore l'optimisation de la formation contradictoire, la mise en œuvre pratique, l'interprétation, l'équité, la distance de Wasserstein et les GAN de Wasserstein.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Couvre les techniques de réduction de la variance dans l'optimisation, en mettant l'accent sur la descente en gradient et les méthodes de descente en gradient stochastique.