Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les méthodes d'optimisation primal-dual, en mettant l'accent sur les techniques de gradient lagrangien et leurs applications dans l'optimisation des données.
Explore les techniques d'encodage et de décodage dans les systèmes de communication, en se concentrant sur les limites fondamentales et les calculs d'informations mutuelles.
Explore les algorithmes d'optimisation composite, y compris les opérateurs proximaux et les méthodes de gradient, avec des exemples et des limites théoriques.
Couvre les bases de l'optimisation, y compris les métriques, les normes, la convexité, les gradients et la régression logistique, en mettant l'accent sur les forts taux de convexité et de convergence.
Explore l'apprentissage machine contradictoire, couvrant la génération d'exemples contradictoires, les défis de robustesse et des techniques telles que la méthode Fast Gradient Sign.
Couvre des exercices sur l'optimisation convexe, en se concentrant sur la formulation et la résolution de problèmes d'optimisation en utilisant YALMIP et des solveurs comme GUROBI et MOSEK.
Introduit des opérateurs proximaux, des méthodes de gradient et une optimisation contrainte, explorant leur convergence et leurs applications pratiques.