A one-way wave equation is a first-order partial differential equation describing one wave traveling in a direction defined by the vector wave velocity. It contrasts with the second-order two-way wave equation describing a standing wavefield resulting from superposition of two waves in opposite directions. In the one-dimensional case, the one-way wave equation allows wave propagation to be calculated without the mathematical complication of solving a 2nd order differential equation. Due to the fact that in the last decades no 3D one-way wave equation could be found numerous approximation methods based on the 1D one-way wave equation are used for 3D seismic and other geophysical calculations, see also the section .
The scalar second-order (two-way) wave equation describing a standing wavefield can be written as:
where is the coordinate, is time, is the displacement, and is the wave velocity.
Due to the ambiguity in the direction of the wave velocity, , the equation does not contain information about the wave direction and therefore has solutions propagating in both the forward () and backward () directions. The general solution of the equation is the summation of the solutions in these two directions:
where and are the displacement amplitudes of the waves running in and direction.
When a one-way wave problem is formulated, the wave propagation direction has to be (manually) selected by keeping one of the two terms in the general solution.
Factoring the operator on the left side of the equation yields a pair of one-way wave equations, one with solutions that propagate forwards and the other with solutions that propagate backwards.
The forward- and backward-travelling waves are described respectively,
The one-way wave equations can also be physically derived directly from specific acoustic impedance.
In a longitudinal plane wave, the specific impedance determines the local proportionality of pressure and particle velocity :
with = density.
The conversion of the impedance equation leads to:
A longitudinal plane wave of angular frequency has the displacement .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to nonlinear Schrödinger equations (NLS) and, more generally, to nonlinear dispersive equations. We will discuss local and global well-posedness, conservation laws, the
Techniques et théories de base pour les équations aux dérivées partielles d'évolution. Etude d'exemples fondamentaux: équations du premier ordre, équation des ondes, équation de la chaleur. Théorème d
The course is an introduction to symmetry analysis in fluid mechanics. The student will learn how to find similarity and travelling-wave solutions to partial differential equations used in fluid and c
Couvre les fondamentaux des systèmes d'équations linéaires, y compris les définitions, les représentations et les méthodes de solution.
Explore la mécanique vibratoire dans les systèmes continus, couvrant la séparation des variables, les conditions aux limites et les solutions harmoniques.
Explore la conservation de l'énergie dans le système Newmark et ses implications pour les estimations de stabilité et d'erreur.
L' ou est une équation aux dérivées partielles en physique qui régit la propagation d'une onde. C'est une équation vérifiée par de nombreux phénomènes ondulatoires de la vie courante comme le son ou la lumière. avec : l'opérateur laplacien ; l'onde vectorielle; une constante, vitesse de propagation de dans le milieu considéré ; L'utilisation du laplacien permet de s'affranchir du choix d'un système de coordonnées. avec : l'opérateur de dérivée partielle seconde en appliqué sur ; , les trois variables cartésiennes de l'espace, et celle du temps.
vignette|upright=1|Propagation d'ondes sphériques de pression dans un fluide. Le son est une vibration mécanique d'un fluide, qui se propage sous forme dondes longitudinales grâce à la déformation élastique de ce fluide. Les êtres humains, comme beaucoup d'animaux, ressentent cette vibration grâce au sens de l'ouïe. L'acoustique est la science qui étudie les sons ; la psychoacoustique étudie la manière dont les organes du corps humain ressentent et l'être humain perçoit et interprète les sons.
vignette|Propagation d'une onde. Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales du milieu. Elle se déplace avec une vitesse déterminée qui dépend des caractéristiques du milieu de propagation. vignette|Une vague s'écrasant sur le rivage. Il existe trois principaux types d'ondes : les ondes mécaniques se propagent à travers une matière physique dont la substance se déforme. Les forces de restauration inversent alors la déformation.
Finite elements methods (FEMs) have benefited from decades of development to solve partial differential equations (PDEs) and to simulate physical systems. In the recent years, machine learning (ML) and artificial neural networks (ANN) have shown great pote ...
2021
, ,
Longitudinal elastic stress wave propagation through a 180° bend junction connecting two square bars is analyzed using analytical and numerical approaches and validated against experiments. The aim is to identify conditions under which the one-dimensional ...
2022
Consider the wave equation with heterogeneous coefficients in the homogenization regime. At large times, the wave interacts in a nontrivial way with the heterogeneities, giving rise to effective dispersive effects. The main achievement of the present wor ...