Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
MicrocontinuityIn nonstandard analysis, a discipline within classical mathematics, microcontinuity (or S-continuity) of an internal function f at a point a is defined as follows: for all x infinitely close to a, the value f(x) is infinitely close to f(a). Here x runs through the domain of f. In formulas, this can be expressed as follows: if then . For a function f defined on , the definition can be expressed in terms of the halo as follows: f is microcontinuous at if and only if , where the natural extension of f to the hyperreals is still denoted f.
The AnalystThe Analyst (subtitled A Discourse Addressed to an Infidel Mathematician: Wherein It Is Examined Whether the Object, Principles, and Inferences of the Modern Analysis Are More Distinctly Conceived, or More Evidently Deduced, Than Religious Mysteries and Points of Faith) is a book by George Berkeley. It was first published in 1734, first by J. Tonson (London), then by S. Fuller (Dublin). The "infidel mathematician" is believed to have been Edmond Halley, though others have speculated Sir Isaac Newton was intended.
Internal setIn mathematical logic, in particular in model theory and nonstandard analysis, an internal set is a set that is a member of a model. The concept of internal sets is a tool in formulating the transfer principle, which concerns the logical relation between the properties of the real numbers R, and the properties of a larger field denoted *R called the hyperreal numbers. The field *R includes, in particular, infinitesimal ("infinitely small") numbers, providing a rigorous mathematical justification for their use.
Théorème des valeurs intermédiairesvignette|Illustration du théorème des valeurs intermédiaires : si f est une fonction continue sur l'intervalle [a ; b], alors elle prend toutes les valeurs comprises entre f(a) et f(b) au moins une fois. Ici la valeur s est prise trois fois. En mathématiques, le théorème des valeurs intermédiaires (abrégé en TVI), parfois appelé théorème de Bolzano, est un résultat important en analyse et concerne des fonctions continues sur un intervalle.
Analyse non standardEn mathématiques, et plus précisément en analyse, l'analyse non standard est un ensemble d'outils développés depuis 1960 afin de traiter la notion d'infiniment petit de manière rigoureuse. Pour cela, une nouvelle notion est introduite, celle d'objet standard (s'opposant à celle d'objet non standard), ou plus généralement de modèle standard ou de modèle non standard. Cela permet de présenter les principaux résultats de l'analyse sous une forme plus intuitive que celle exposée traditionnellement depuis le .
Augustin Louis CauchyAugustin Louis, baron Cauchy, né à Paris le et mort à Sceaux le , est un mathématicien français, membre de l’Académie des sciences et professeur à l’École polytechnique. Catholique fervent, il est le fondateur de nombreuses œuvres charitables, dont l’Œuvre des Écoles d’Orient. Royaliste légitimiste, il s’exile volontairement lors de l'avènement de Louis-Philippe, après les Trois Glorieuses. Ses positions politiques et religieuses lui valurent nombre d’oppositions.
Infiniment petitLes infinitésimaux (ou infiniment petits) ont été utilisés pour exprimer l'idée d'objets si petits qu'il n'y a pas moyen de les voir ou de les mesurer. Le mot vient de infinitesimus (latin du ), ce qui signifiait à l'origine l'élément dans une série. Selon la notation de Leibniz, si x est une quantité, dx et Δx peuvent représenter une quantité infinitésimale de x. Dans le langage courant, un objet infiniment petit est un objet qui est plus petit que toute mesure possible, donc non pas d'une taille zéro, mais si petit qu'il ne peut être distingué de zéro par aucun moyen disponible.
Abraham RobinsonAbraham Robinson ( en Allemagne - aux États-Unis) est un mathématicien, logicien et un ingénieur en aérodynamique célèbre pour sa création de l’analyse non standard (1961), une théorie mathématique du calcul infinitésimal, qui rend rigoureux l'usage des infiniment petits et des infiniment grands introduit par Leibniz (vers 1690) et largement utilisé par Euler. La formalisation la plus usuelle du calcul infinitésimal, celle mise au point par les analystes du , évacue ces deux notions. Il reçoit la Médaille Brouwer en 1973.