Tenseur de Riemannvignette|Motivation de la courbure de Riemann pour les variétés sphériques. En géométrie riemannienne, le tenseur de courbure de Riemann-Christoffel est la façon la plus courante d'exprimer la courbure des variétés riemanniennes, ou plus généralement d'une variété disposant d'une connexion affine, avec ou sans torsion. Soit deux géodésiques d'un espace courbe, parallèles au voisinage d'un point P. Le parallélisme ne sera pas nécessairement conservé en d'autres points de l'espace.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Connexion affineEn mathématiques, et plus précisément en géométrie différentielle, une connexion affine est un objet géométrique défini sur une variété différentielle, qui connecte des espaces tangents voisins, et permet ainsi à des champs de vecteurs tangents d'être dérivés comme si c'étaient des fonctions définies sur la variété et prenant leurs valeurs dans un unique espace vectoriel.
Tenseur métriqueEn géométrie, et plus particulièrement en géométrie différentielle, le tenseur métrique est un tenseur d'ordre 2 permettant de définir le produit scalaire de deux vecteurs en chaque point d'un espace, et qui est utilisé pour la mesure des longueurs et des angles. Il généralise le théorème de Pythagore. Dans un système de coordonnées donné, le tenseur métrique peut se représenter comme une matrice symétrique, généralement notée , pour ne pas confondre la matrice (en majuscule) et le tenseur métrique g.