Concepts associés (42)
Gaz
vignette|Sphère de stockage de gaz naturel. vignette|Conduite de gaz de ville en polyéthylène. vignette|Panneau indiquant une conduite de gaz enterrée en France. vignette|Les gaz de combat ont été produits et utilisés de manière industrielle lors de la Première Guerre mondiale. Un gaz est un ensemble d'atomes ou de molécules très faiblement liés et quasi indépendants. Dans l’état gazeux, la matière n'a pas de forme propre ni de volume propre : un gaz tend à occuper tout le volume disponible.
Loi des gaz parfaits
vignette|Isothermes d'un gaz parfait (diagramme (P,V,T)). La relation entre la pression P et le volume V est hyperbolique . En physique, et plus particulièrement en thermodynamique, la loi des gaz parfaits, ou équation des gaz parfaits, est l'équation d'état applicable aux gaz parfaits. Elle a été établie en 1834 par Émile Clapeyron par combinaison de plusieurs lois des gaz établies antérieurement. Cette équation s'écrit : avec : la pression (Pa) ; le volume du gaz (m3) ; la quantité de matière (mol) ; la constante universelle des gaz parfaits (≈ ) ; la température absolue (K).
Loi de Boyle-Mariotte
vignette|250px|Dispositif de Kröncke pour la démonstration de la loi Boyle-Mariotte.Musée des sciences de Milan, ( voir sur le site du musée). La loi de Boyle-Mariotte ou loi de Mariotte, souvent appelée loi de Boyle dans le monde anglo-saxon, du nom du physicien et chimiste irlandais Robert Boyle et de l'abbé physicien et botaniste français Edme Mariotte, est l'une des lois de la thermodynamique constituant la loi des gaz parfaits. Elle relie la pression et le volume d'un gaz parfait à température constante.
Équation d'état
En physique, et plus particulièrement en thermodynamique, une équation d'état d'un système à l'équilibre thermodynamique est une relation entre différents paramètres physiques (appelés variables d'état) qui déterminent son état. Il peut s'agir par exemple d'une relation entre sa température, sa pression et son volume. À partir de l'équation d'état caractéristique d'un système physique, il est possible de déterminer la totalité des quantités thermodynamiques décrivant ce système et par suite de prédire ses propriétés.
Température
La température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement. En physique, elle se définit de plusieurs manières : comme fonction croissante du degré d’agitation thermique des particules (en théorie cinétique des gaz), par l’équilibre des transferts thermiques entre plusieurs systèmes ou à partir de l’entropie (en thermodynamique et en physique statistique).
Constante de Boltzmann
La constante de Boltzmann k (ou k) a été introduite par Ludwig Boltzmann dans sa définition de l'entropie de 1877. Le système étant à l'équilibre macroscopique, mais libre d'évoluer à l'échelle microscopique entre micro-états différents, son entropie S est donnée par : où la constante k retenue par le CODATA vaut (valeur exacte). La constante des gaz parfaits est liée à la constante de Boltzmann par la relation : (avec (valeur exacte) le nombre d'Avogadro, nombre de particules dans une mole). D'où :.
Loi de distribution des vitesses de Maxwell
En théorie cinétique des gaz, la loi de distribution de vitesses de Maxwell quantifie la répartition statistique des vitesses des particules dans un gaz homogène à l'équilibre thermodynamique. Les vecteurs vitesse des particules suivent une loi normale. Cette loi a été établie par James Clerk Maxwell en 1860 et confirmée ultérieurement par Ludwig Boltzmann à partir de bases physiques qui fondent la physique statistique en 1872 et 1877.
Température thermodynamique
La température thermodynamique est une formalisation de la notion expérimentale de température et constitue l’une des grandeurs principales de la thermodynamique. Elle est intrinsèquement liée à l'entropie. Usuellement notée , la température thermodynamique se mesure en kelvins (symbole K). Encore souvent qualifiée de « température absolue », elle constitue une mesure absolue parce qu’elle traduit directement le phénomène physique fondamental qui la sous-tend : l’agitation des constituant la matière (translation, vibration, rotation, niveaux d'énergie électronique).
Théorie cinétique des gaz
La théorie cinétique des gaz a pour objet d'expliquer le comportement macroscopique d'un gaz à partir des caractéristiques des mouvements des particules qui le composent. Elle permet notamment de donner une interprétation microscopique aux notions de : température : c'est une mesure de l'agitation des particules, plus précisément de leur énergie cinétique ; pression : la pression exercée par un gaz sur une paroi résulte des chocs des particules sur cette dernière. Elle est liée à leur quantité de mouvement.
Pression partielle
La pression partielle d'un composant dans un mélange de gaz parfaits est définie comme la pression qui serait exercée par les molécules de ce composant s'il occupait seul, tout le volume offert au mélange, à la température de celui-ci. Elle correspond donc à la contribution de ce composant à la pression totale du mélange. La pression partielle d'un composant est une mesure de l'activité thermodynamique des molécules de ce gaz.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.