Relativistic angular momentumIn physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics. Angular momentum is an important dynamical quantity derived from position and momentum. It is a measure of an object's rotational motion and resistance to changes in its rotation.
Hamilton's principleIn physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system.
Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Maupertuis's principleIn classical mechanics, Maupertuis's principle (named after Pierre Louis Maupertuis) states that the path followed by a physical system is the one of least length (with a suitable interpretation of path and length). It is a special case of the more generally stated principle of least action. Using the calculus of variations, it results in an integral equation formulation of the equations of motion for the system. Maupertuis's principle states that the true path of a system described by generalized coordinates between two specified states and is a stationary point (i.
Mathematical descriptions of the electromagnetic fieldThere are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking. Classical electromagnetism The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field.
Hamiltonien en théorie des champsEn physique théorique, la théorie des champs hamiltoniens est analogue à la mécanique hamiltonienne classique, appliquée à la théorie des champs. C'est un formalisme de la théorie classique des champs qui se base sur la théorie lagrangienne des champs. Elle a également des applications dans la théorie quantique des champs. L'hamiltonien, pour un système de particules discrètes, est une fonction qui dépend de leurs coordonnées généralisées et de leurs moments conjugués, et éventuellement du temps.
Principe variationnelUn principe variationnel est un principe physique s'exprimant sous une forme variationnelle et duquel, dans un domaine précis de la physique (mécanique, optique géométrique, électromagnétisme, etc), de nombreuses propriétés peuvent être déduites. Dans de nombreux cas, la résolution des équations se ramène à la recherche de géodésiques dans un espace approprié (en général l'espace des états du système physique étudié), sachant que ces géodésiques sont les extrémales d'une certaine intégrale représentant la longueur de l'arc joignant les points fixes dans cet espace abstrait.
Two New SciencesThe Discourses and Mathematical Demonstrations Relating to Two New Sciences (Discorsi e dimostrazioni matematiche intorno a due nuove scienze diˈskorsi e ddimostratˈtsjoːni mateˈmaːtike inˈtorno a dˈduːe ˈnwɔːve ʃˈʃɛntse) published in 1638 was Galileo Galilei's final book and a scientific testament covering much of his work in physics over the preceding thirty years. It was written partly in Italian and partly in Latin.
Vitesse d'évolutionEn physique, la vitesse d'évolution (ou vitesse de variation, ou évolution temporelle) d'une grandeur physique est la dérivée partielle de cette grandeur par rapport au temps. La vitesse d'évolution est à la dimension temps ce que le vecteur gradient () est aux trois dimensions de l'espace. La vitesse d'évolution de la grandeur physique G est définie comme la limite de la différence entre deux états du système, divisée par l'intervalle de temps séparant ces états, lorsque cet intervalle tend vers zéro : La grandeur G peut être d'une nature quelconque : scalaire, vecteur, complexe, tenseur, et aussi bien intensive qu'extensive, et sa vitesse d'évolution est alors de même nature.