Explore la définition et les propriétés des applications linéaires, en mettant l'accent sur l'injectivité, la surjectivité, le noyau et l'image, en mettant l'accent sur les matrices.
Explore les compositions d'applications et les conditions d'injectivité en algèbre linéaire, y compris la restriction des applications et la preuve combinatoire des injections.
Couvre les modules injectables, les modules Ox-modules, et leur pertinence dans les structures algébriques, soulignant leur importance dans la résolution des résolutions acycliques et l'informatique de la cohomologie.
Explore la convolution des signaux, l'injectivité, les opérateurs inverses, la stabilité, l'inégalité des jeunes, la transformation en Z et la propriété du produit.