Concept

Affirmation du conséquent

Résumé
NOTOC L'affirmation du conséquent est un sophisme formel par lequel on considère une condition suffisante comme une condition nécessaire. On traite alors une implication logique comme si elle était une équivalence logique. En langage naturel, l'affirmation du conséquent s'exprime : Si P alors Q Q Donc, P Le conséquent Q de l'énoncé conditionnel Si P alors Q peut être réalisé même si l'antécédent P ne l'est pas. On nomme ainsi ce sophisme « affirmation du conséquent », car il consiste à affirmer que le conséquent est réalisé pour en inférer que son antécédent l'est aussi. En logique, ce raisonnement invalide prend la forme : ((P ⇒ Q) ∧ Q) ⇒ P. C'est en quelque sorte une confusion entre la possibilité et la nécessité. La possibilité implique que plusieurs causes peuvent avoir la même conséquence. Il faut pour cela s'assurer des interactions entre les causes pour la même conséquence. Pour que l'affirmation du conséquent soit valide, il faut que la cause et la conséquence soient non-seulement liées mais qu'il n'y ait également aucune autre possibilité envisageable. Un exemple interprété peut donner : S'il a plu (P), alors le sol est mouillé (Q). Le sol est mouillé (Q). Donc il a plu (P). Un tel raisonnement est invalide parce que le sol peut être mouillé pour une autre raison que la pluie, comme un arrosage. Autres exemples : Si j'ai plus de 18 ans (P), alors je suis majeur en France (Q). Je suis majeur en France (Q). Donc j'ai plus de 18 ans (P). Ce raisonnement n'est pas valide d'un point de vue purement formel. Il semble juste parce que nous savons par définition que la réciproque de l'affirmation de départ est vraie, autrement dit qu'il y a une équivalence entre le fait d'être majeur et celui d'avoir atteint l'âge requis, ce qui fait implicitement intervenir une autre proposition que celle présente dans l'énoncé (autrement dit, dans cet exemple la conclusion est vraie, mais le raisonnement utilisé est faux).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.