Concept

Modus tollens

Résumé
En logique propositionnelle, le modus tollens (aussi nommé modus tollendo tollens, du Latin : « mode qui, en niant, nie ») est une forme d'argument valide et une règle d'inférence. Celui-ci est une application de la vérité générale selon laquelle, si une proposition est vraie, alors il en est de même pour sa proposition contraposée. Les premiers à décrire explicitement le modus tollens étaient les stoïciens. La règle d'inférence modus tollens est l'inférence selon laquelle « P implique Q » et la négation du conséquent Q entraînent la négation de l'antécédent P. La règle du modus tollens peut être formellement énoncée comme suit : : \frac{P \to Q, \neg Q}{\therefore \neg P} où P \to Q signifie « P implique Q ». \neg Q veut dire « il n'est pas vrai que Q » (souvent abrégé « non Q »). Ainsi, chaque fois que « P \to Q » et « \neg Q » apparaissent sur la ligne de preuve, alors « \neg P » peut être placé sur une
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement