Concept

Calcul des propositions

Le calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts. Il est considéré comme la forme moderne de la logique stoïcienne. La notion de proposition a fait l'objet de nombreux débats au cours de l'histoire de la logique ; l'idée consensuelle est qu'une proposition est une construction syntaxique censée parler de vérité. En logique mathématique, le calcul des propositions est la première étape dans la définition de la logique et du raisonnement. Il définit les règles de déduction qui relient les propositions entre elles, sans en examiner le contenu ; il est ainsi une première étape dans la construction du calcul des prédicats, qui lui s'intéresse au contenu des propositions et qui est une formalisation achevée du raisonnement mathématique. Le calcul des propositions, ou calcul propositionnel est encore appelé logique des propositions, logique propositionnelle ou calcul des énoncés. Quoique le calcul des propositions ne se préoccupe pas du contenu des propositions, mais seulement de leurs relations, il peut être intéressant de discuter ce que pourrait être ce contenu. Une proposition donne une information sur un état de chose. Ainsi « 2 + 2 = 4 » ou « le livre est ouvert » sont deux propositions. En logique classique (logique bivalente), une proposition peut prendre uniquement les valeurs vrai ou faux. Une phrase optative (qui exprime un souhait comme « Que Dieu nous protège ! »), une phrase impérative (« viens ! », « tais-toi ! ») ou une interrogation n'est pas une proposition. « Que Dieu nous protège ! » ne peut être ni vraie ni fausse : elle exprime uniquement un souhait du locuteur.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
CS-550: Formal verification
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
Afficher plus
Séances de cours associées (153)
Logique principale : quantificateurs, FNC, DNF
Couvre Predice Logic, en mettant l'accent sur les quantificateurs, le FNC et le DNF.
Logique propositionnelle : Questions organisationnelles
Couvre les questions organisationnelles de l'instructeur et souligne l'importance du visionnage vidéo, des exercices et de l'interaction Discord.
Théorème de la courbe de Jordan
Couvre la preuve du théorème de la courbe de Jordan et les propriétés des sphères incorporées.
Afficher plus
Publications associées (41)
Concepts associés (47)
If and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.
Connecteur logique
En logique, un connecteur logique est un opérateur booléen utilisé dans le calcul des propositions. Comme dans toute approche logique, il faut distinguer un aspect syntaxique et un aspect sémantique. D'un point de vue syntaxique, les connecteurs sont des opérateurs dans un langage formel pour lesquels un certain nombre de règles définissent leur usage, au besoin complétées par une sémantique. Si l'on se place dans la logique classique, l'interprétation des variables se fait dans les booléens ou dans une extension multivalente de ceux-ci.
Logique
La logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Afficher plus
MOOCs associés (3)
Parallel programming
With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th
Parallel programming
With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th
Parallel programming
With every smartphone and computer now boasting multiple processors, the use of functional ideas to facilitate parallel programming is becoming increasingly widespread. In this course, you'll learn th

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.