Concept

Calcul des propositions

Résumé
Le calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts. Il est considéré comme la forme moderne de la logique stoïcienne. La notion de proposition a fait l'objet de nombreux débats au cours de l'histoire de la logique ; l'idée consensuelle est qu'une proposition est une construction syntaxique censée parler de vérité. En logique mathématique, le calcul des propositions est la première étape dans la définition de la logique et du raisonnement. Il définit les règles de déduction qui relient les propositions entre elles, sans en examiner le contenu ; il est ainsi une première étape dans la construction du calcul des prédicats, qui lui s'intéresse au contenu des propositions et qui est une formalisation achevée du raisonnement mathématique. Le calcul des propositions, ou calcul propositionnel est encore appelé logique des propositions, logique propositionnelle ou calcul des énoncés. Quoique le calcul des propositions ne se préoccupe pas du contenu des propositions, mais seulement de leurs relations, il peut être intéressant de discuter ce que pourrait être ce contenu. Une proposition donne une information sur un état de chose. Ainsi « 2 + 2 = 4 » ou « le livre est ouvert » sont deux propositions. En logique classique (logique bivalente), une proposition peut prendre uniquement les valeurs vrai ou faux. Une phrase optative (qui exprime un souhait comme « Que Dieu nous protège ! »), une phrase impérative (« viens ! », « tais-toi ! ») ou une interrogation n'est pas une proposition. « Que Dieu nous protège ! » ne peut être ni vraie ni fausse : elle exprime uniquement un souhait du locuteur.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.