Modus tollensEn logique propositionnelle, le modus tollens (aussi nommé modus tollendo tollens, du Latin : « mode qui, en niant, nie ») est une forme d'argument valide et une règle d'inférence. Celui-ci est une application de la vérité générale selon laquelle, si une proposition est vraie, alors il en est de même pour sa proposition contraposée. Les premiers à décrire explicitement le modus tollens étaient les stoïciens. La règle d'inférence modus tollens est l'inférence selon laquelle « P implique Q » et la négation du conséquent Q entraînent la négation de l'antécédent P.
Modus ponensLe modus ponens, ou détachement, est une figure du raisonnement logique concernant l'implication. Elle consiste à affirmer une implication (« si A alors B ») et à poser ensuite l'antécédent (« or A ») pour en déduire le conséquent (« donc B »). Le terme modus ponens est une abréviation du latin modus ponendo ponens qui signifie « le mode qui, en posant, pose ». Il vient de ce qu'en posant (affirmant) A, on pose (affirme) B (ponendo est le gérondif du verbe ponere qui signifie poser, et ponens en est le participe présent).
Calcul des propositionsLe calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
Proposition contraposéeEn logique, la contraposition est un type de raisonnement consistant à affirmer l'implication « si non B alors non A » à partir de l'implication « si A alors B ». L'implication « si non B alors non A » est appelée contraposée de « si A alors B ». Par exemple, la proposition contraposée de la proposition « s'il pleut, alors le sol est mouillé » est « si le sol n'est pas mouillé, alors il ne pleut pas ». Considérons l'exemple suivant :S'il pleut, alors le sol est mouillé.
Raisonnement déductifEn logique, la déduction est une inférence menant d'une affirmation générale à une conclusion particulière. La déduction est une opération par laquelle on établit au moyen de prémisses une conclusion qui en est la conséquence nécessaire, en vertu de règles d'inférence logiques. Ces règles sont notamment l'objet des Premiers Analytiques d'Aristote. On l'oppose généralement à l'induction, qui consiste au contraire à extraire d'un nombre fini de propositions données par l'observation, une conclusion ou un petit nombre de conclusions plus générales.
Logical formIn logic, logical form of a statement is a precisely-specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system. In an ideal formal language, the meaning of a logical form can be determined unambiguously from syntax alone. Logical forms are semantic, not syntactic constructs; therefore, there may be more than one string that represents the same logical form in a given language.