Concepts associés (13)
Produit tensoriel (graphe)
Le produit tensoriel est une opération sur deux graphes et résultant en un graphe . Il est également appelé produit direct, produit de Kronecker ou produit catégorique. Soient deux graphes et . Le produit tensoriel est défini comme suit : l'ensemble de ses sommets est le produit cartésien ; et sont adjacents dans si et seulement si et sont adjacents dans et et sont adjacents dans . Autrement dit, deux sommets sont voisins si les sommets dont ils sont issus étaient voisins dans les deux graphes.
Complexity of constraint satisfaction
The complexity of constraint satisfaction is the application of computational complexity theory on constraint satisfaction. It has mainly been studied for discriminating between tractable and intractable classes of constraint satisfaction problems on finite domains. Solving a constraint satisfaction problem on a finite domain is an NP-complete problem in general. Research has shown a number of polynomial-time subcases, mostly obtained by restricting either the allowed domains or constraints or the way constraints can be placed over the variables.
Graphe de Mycielski
En théorie des graphes, les graphes de Mycielski, ou myscielkiens, sont des graphes sans triangles de nombre chromatique élevé, construits par récurrence à partir du graphe formé d'un unique sommet par une transformation appelée elle aussi myscielskien. Ils sont dus au mathématicien Jan Mycielski. Soit un graphe. Le mycielkien de ce graphe noté est le graphe avec où est une copie de et où et . Les graphes de Mycielski sont les graphes définis par la récurrence suivante : est le graphe à une arête, et .
Bipartite double cover
In graph theory, the bipartite double cover of an undirected graph G is a bipartite, covering graph of G, with twice as many vertices as G. It can be constructed as the tensor product of graphs, G × K_2. It is also called the Kronecker double cover, canonical double cover or simply the bipartite double of G. It should not be confused with a cycle double cover of a graph, a family of cycles that includes each edge twice. The bipartite double cover of G has two vertices u_i and w_i for each vertex v_i of G.
Graphe complémentaire
frame|right|Le graphe de Petersen, à gauche et son complémentaire, à droite. En théorie des graphes, le graphe complémentaire ou graphe inversé d'un graphe simple est un graphe simple ayant les mêmes sommets et tel que deux sommets distincts de soient adjacents si et seulement s'ils ne sont pas adjacents dans . Le graphe complémentaire ne doit pas être confondu avec le complémentaire dans le sens de la théorie des ensembles. En effet, l'ensemble des sommets de G reste inchangé. Le complémentaire du complémentaire est le graphe original.
Homéomorphisme de graphes
En théorie des graphes, une branche des mathématiques, deux graphes et sont homéomorphes si l'on peut obtenir un même graphe en subdivisant certaines de leurs arêtes. Deux graphes sont homéomorphes si et seulement si leurs représentations graphiques usuelles (avec des segments de droites reliant les sommets entre eux) sont homéomorphes au sens que ce mot a en topologie. Subdivision La subdivision d'une arête conduit à un graphe contenant un nouveau sommet et où l'on a remplacé l'arête par deux nouvelles arêtes, et .
Voisinage (théorie des graphes)
En théorie des graphes on dit que deux sommets d'un graphe non-orienté sont voisins ou adjacents s'ils sont reliés par une arête. Le voisinage d'un sommet peut désigner l'ensemble de ses sommets voisins ou bien un sous-graphe associé, par exemple le sous-graphe induit. Dans un graphe orienté, on emploie généralement le terme de prédécesseur ou de successeur. Dans un graphe non orienté , le voisinage d'un sommet , souvent noté (N pour neighbourhood) peut désigner plusieurs choses : L'ensemble des sommets voisins : Les sous-graphe de induit par les sommets précédents, avec ou sans selon les versions.
Coloration de graphe
thumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Lexique de la théorie des graphes
NOTOC Acyclique graphe ne contenant pas de cycle. Adjacence une liste d'adjacence est une structure de données constituée d'un tableau dont le -ème élément correspond à la liste des voisins du -ème sommet. Adjacence une matrice d'adjacence est une matrice carrée usuellement notée , de dimensions , dont chaque élément est égal au nombre d'arêtes incidentes (ayant pour extrémités) aux sommets d'indices et (pour un graphe simple non pondéré, ). Dans le cas d'un graphe pondéré, chaque élément est égal à la somme du poids des arêtes incidentes.
Graphe orienté
thumb|Un graphe orienté .(Figure 1) Dans la théorie des graphes, un graphe orienté est un couple formé de un ensemble, appelé ensemble de nœuds et un ensemble appelé ensemble d'arêtes. Les arêtes sont alors nommées arcs, chaque arête étant un couple de noeuds, représenté par une flèche. Étant donné un arc , on dit que est l'origine (ou la source ou le départ ou le début) de et que est la cible (ou l'arrivée ou la fin) de . Le demi-degré extérieur (degré sortant) d'un nœud, noté , est le nombre d'arcs ayant ce nœud pour origine.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.