Symétrie (physique)En physique la notion de symétrie, qui est intimement associée à la notion d'invariance, renvoie à la possibilité de considérer un même système physique selon plusieurs points de vue distincts en termes de description mais équivalents quant aux prédictions effectuées sur son évolution. Une théorie physique possède alors une symétrie S, si toute équation dans cette théorie décrit tout aussi correctement une particule ρ qu'une particule -ρ 'symétrique' de ρ.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Principe de relativitéLe principe de relativité affirme que les lois physiques s'expriment de manière identique dans tous les référentiels inertiels : les lois sont « invariantes par changement de référentiel inertiel ». Cela implique que pour deux expériences préparées de manière identique dans deux référentiels inertiels, les mesures faites sur l'une et l'autre dans leur référentiel respectif sont identiques : si je laisse tomber une balle, je constate la même trajectoire, que je réalise l'expérience sur le quai d'une gare ou dans un train en mouvement rectiligne uniforme.
Force d'inertieUne force d'inertie, ou inertielle, ou force fictive, ou pseudo-force est une force apparente qui agit sur les masses lorsqu'elles sont observées à partir d'un référentiel non inertiel, autrement dit depuis un point de vue en mouvement accéléré (en translation ou en rotation). La force d'inertie est donc une résistance opposée au mouvement par un corps, grâce à sa masse. L'équation fondamentale de la dynamique, dans la formulation initiale donnée par Newton, est valable uniquement dans des référentiels inertiels (dits aussi galiléens).
Principe d'équivalenceOn énumère en général trois principes d'équivalence : le principe « faible », celui d'Einstein et le principe « fort ». Le premier est le constat de l'égalité entre la masse inertielle et la masse gravitationnelle. Albert Einstein présente le second comme une « interprétation » du premier en termes d'équivalence locale entre la gravitation et l'accélération (elles sont localement indistinguables) ; c'est un élément clé de la construction de la relativité générale.
Geodesics in general relativityIn general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance).
Invariant (physics)In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition. Invariants of a system are deeply tied to the symmetries imposed by its environment. Invariance is an important concept in modern theoretical physics, and many theories are expressed in terms of their symmetries and invariants.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Covariance de Lorentzvignette|Illustration de l'espace-temps. En relativité restreinte, une quantité est dite covariante de Lorentz lorsque ses composantes forment une représentation du groupe de Lorentz. Par exemple le temps propre se transforme de façon particulièrement simple puisqu'il est invariant sous transformation de Lorentz, on dit que c'est une quantité scalaire et on parle de scalaire de Lorentz. La représentation associée du groupe de Lorentz est la représentation triviale.
Loi scientifiquevignette|Ce diagramme de Venn tente de comparer et d'opposer les lois et les théories scientifiques. Une loi scientifique est un postulat basé sur des observations ou expériences répétées qui décrivent ou prédisent certains aspects de l'univers. Le terme "loi" est utilisé dans de nombreux cas (approximatif, précis, large ou étroit) dans tous les domaines des sciences naturelles (physique, chimie, astronomie, géosciences, biologie).