Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les critères de performance dans l'apprentissage supervisé, en mettant l'accent sur la précision, le rappel et la spécificité dans l'évaluation des modèles.
Explore limpact de la complexité du modèle sur la qualité de la prédiction à travers le compromis biais-variance, en mettant laccent sur la nécessité déquilibrer le biais et la variance pour une performance optimale.
Explore les fondamentaux de l'apprentissage profond, y compris la classification de l'image, les principes de travail du réseau neuronal et les défis de l'apprentissage automatique.
Explore la généralisation de l'apprentissage automatique, en mettant l'accent sur les compromis sous-équipés et sur-équipés, les cadres enseignant-étudiant et l'impact des caractéristiques aléatoires sur les performances du modèle.
Introduit les bases de l'apprentissage automatique, couvrant la classification supervisée, les limites de décision et l'ajustement de la courbe polynomiale.
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.