SpinLe 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
Fock stateIn quantum mechanics, a Fock state or number state is a quantum state that is an element of a Fock space with a well-defined number of particles (or quanta). These states are named after the Soviet physicist Vladimir Fock. Fock states play an important role in the second quantization formulation of quantum mechanics. The particle representation was first treated in detail by Paul Dirac for bosons and by Pascual Jordan and Eugene Wigner for fermions.
Espace de FockL'espace de Fock est une construction algébrique utilisée en mécanique quantique pour construire l'espace des états quantiques d'un nombre variable ou inconnu de particules identiques à partir d'une seule particule de l'espace de Hilbert H. Il porte le nom de Vladimir A. Fock qui l'a présenté pour la première fois dans son article de 1932 "Konfigurationsraum und zweite Quantelung", traduisible par "espace de configuration et deuxième quantification.
Spin-1/2In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2. The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started. Particles having net spin 1/2 include the proton, neutron, electron, neutrino, and quarks.
Seconde quantificationLa seconde quantification, aussi appelée quantification canonique, est une méthode de quantification des champs introduite par Dirac en 1927 pour l'électrodynamique quantique. Elle consiste à partir d'un champ classique tel que le champ électromagnétique, à le considérer comme un système physique et à remplacer les grandeurs classiques décrivant l'état du champ par un état quantique et des observables de la physique quantique. On aboutit naturellement à la conclusion que l'énergie du champ est quantifiée, chaque quantum représentant une particule.
Quantifications canoniquesEn physique, la quantification canonique est une procédure pour quantifier une théorie classique, tout en essayant de préserver au maximum la structure formelle, comme les symétries, de la théorie classique. Historiquement, ce n'était pas tout à fait la voie de Werner Heisenberg pour obtenir la mécanique quantique, mais Paul Dirac l'a introduite dans sa thèse de doctorat de 1926, la «méthode de l'analogie classique» pour la quantification, et l'a détaillée dans son texte classique.
Oscillateur harmonique quantiqueL'oscillateur harmonique quantique correspond au traitement par les outils de la mécanique quantique de l'oscillateur harmonique classique. De façon générale, un oscillateur est un système dont l'évolution dans le temps est périodique. Il est dit de plus harmonique si les oscillations effectuées sont sinusoïdales, avec une amplitude et une fréquence qui ne dépendent que des caractéristiques intrinsèques du système et des conditions initiales.
Momentum operatorIn quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is: where ħ is Planck's reduced constant, i the imaginary unit, x is the spatial coordinate, and a partial derivative (denoted by ) is used instead of a total derivative (d/dx) since the wave function is also a function of time. The "hat" indicates an operator.
Particle number operatorIn quantum mechanics, for systems where the total number of particles may not be preserved, the number operator is the observable that counts the number of particles. The number operator acts on Fock space. Let be a Fock state, composed of single-particle states drawn from a basis of the underlying Hilbert space of the Fock space. Given the corresponding creation and annihilation operators and we define the number operator by and we have where is the number of particles in state . The above equality can be
PhononEn physique, un phonon correspond à une excitation collective dans un arrangement périodique d'atomes constituant une structure cristalline ou amorphe. La déformation est élastique. L'onde qui se propage peut être assimilée à une quasi-particule. Ils permettent d'expliquer les propriétés physiques des solides : la capacité thermique ; la conductivité thermique ; la capacité à propager le son ; la dilatation thermique. Le concept de phonon a été créé par Igor Tamm en et le mot « phonon » (du grec ancien / phonê, la voix) a été inventé par Yakov Frenkel en .