Explore l'apprentissage par renforcement profond basé sur des modèles, en se concentrant sur Monte Carlo Tree Search et ses applications dans les stratégies de jeu et les processus décisionnels.
Couvre MuZero, un modèle qui apprend à prédire les récompenses et les actions de manière itérative, réalisant des performances de pointe dans les jeux de société et les jeux vidéo Atari.
Couvre l'importance de la soustraction de la récompense moyenne dans les méthodes de gradient de politique pour l'apprentissage par renforcement profond, réduisant le bruit dans le gradient stochastique.
Discute de la navigation par quadritor en utilisant l'apprentissage de renforcement profond et le contrôle de bas niveau, en mettant l'accent sur l'intelligence visuelle et la robustesse du modèle de regard.
Explore les agents d'apprentissage profond dans l'apprentissage du renforcement, en mettant l'accent sur les approximations du réseau neuronal et les défis dans la formation des systèmes multiactifs.
Couvre les bases de l'apprentissage de renforcement, y compris l'apprentissage d'essai et d'erreur, l'apprentissage Q, le RL profond, et les applications dans le jeu et la planification.
Explore la recherche de bugs, la vérification et l'utilisation d'approches aidées à l'apprentissage dans le raisonnement de programme, montrant des exemples comme le bug Heartbleed et le raisonnement bayésien différentiel.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.