Amplitude de probabilitévignette|Une fonction d'onde pour un seul électron dans l'orbite atomique 5d d'un atome d'hydrogène . La forme montre les endroits où la densité de probabilité de l'électron est supérieure à une certaine valeur, celle-ci est calculée avec l'amplitude de probabilité. La teinte sur la surface colorée montre la phase complexe de la fonction d'onde. En mécanique quantique, une amplitude de probabilité est un nombre complexe utilisé pour décrire le comportement d'un système.
Théorie d'Everettvignette|redresse=1.3|Le paradoxe du chat de Schrödinger dans l’interprétation d’Everett des mondes multiples (many worlds). Ici, chaque évènement est une bifurcation. Le chat est à la fois mort et vivant, avant même l'ouverture de la boite, mais le chat mort et le chat vivant existent dans des bifurcations différentes de l'univers, qui sont tout aussi réelles l'une que l'autre.
Théorie de De Broglie-Bohmalt=Louis de Broglie|vignette|Louis de BroglieLa Théorie de De Broglie-Bohm (abrégée ), ou mécanique bohmienne, est une interprétation de la mécanique quantique. Elle a été formulée en 1952 par le physicien David Bohm. Il s'agit d'un développement de la théorie de l'onde pilote imaginée par Louis de Broglie en 1927. Elle est aussi connue sous les noms d'interprétation ontologique et d'interprétation causale.
Postulats de la mécanique quantiquevignette|Participants au Congrès Solvay de 1927 sur la mécanique quantique Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats. S'il existe un très large consensus entre les physiciens sur la manière de réaliser les calculs qui permettent de rendre compte des phénomènes quantiques et de prévoir leur évolution, il n'existe pas en revanche de consensus sur une manière unique de les expliquer aux étudiants.
Paradoxe EPRLe paradoxe EPR, abréviation de Einstein-Podolsky-Rosen, est une expérience de pensée, élaborée par Albert Einstein, Boris Podolsky et Nathan Rosen, et présentée dans un article de 1935, dont le but premier était de réfuter l'interprétation de l'école de Copenhague de la physique quantique. Ce paradoxe met en évidence des corrélations de mesures d'objets quantiques intriqués à une distance arbitrairement grande. Cela semble, a priori, incompatible soit avec le principe de localité, ou cela indique que le formalisme de la mécanique quantique est incomplet.
Intrication quantiqueEn mécanique quantique, l'intrication quantique, ou enchevêtrement quantique, est un phénomène dans lequel deux particules (ou groupes de particules) forment un système lié, et présentent des états quantiques dépendant l'un de l'autre quelle que soit la distance qui les sépare. Un tel état est dit « intriqué » ou « enchevêtré », parce qu'il existe des corrélations entre les propriétés physiques observées de ces particules distinctes. En effet, le théorème de Bell démontre que l'intrication donne lieu à des actions non locales.
Effet Zénon quantiquevignette|400x400px| Avec le nombre croissant de mesures, la fonction d'onde a tendance à rester dans sa forme initiale. Dans l'animation, une évolution libre dans le temps d'une fonction d'onde, représentée à gauche. Dans la partie centrale, elle est interrompue par des mesures de position occasionnelles qui localisent la fonction d'onde dans l'un des neuf secteurs. À droite, une série de mesures très fréquentes conduit à l'effet Zénon.
Mécanique matricielleLa mécanique matricielle est une formulation de la mécanique quantique construite par Werner Heisenberg, Max Born et Pascual Jordan en 1925. La mécanique matricielle est la première définition complète et correcte de la mécanique quantique. Elle prolonge le modèle de Bohr en décrivant la manière dont se produisent les sauts quantiques, en interprétant les propriétés physiques des particules comme des matrices évoluant dans le temps.
Matrice densitéEn physique quantique, la matrice densité, souvent représentée par , est un objet mathématique introduit par le mathématicien et physicien John von Neumann permettant de décrire l'état d'un système physique. Elle constitue une généralisation de la formulation d'un état physique à l'aide d'un ket , en permettant de décrire des états plus généraux, appelés mélanges statistiques, que la précédente formulation ne permettait pas de décrire.
Objective-collapse theoryObjective-collapse theories, also known as models of spontaneous wave function collapse or dynamical reduction models, are proposed solutions to the measurement problem in quantum mechanics. As with other theories called interpretations of quantum mechanics, they are possible explanations of why and how quantum measurements always give definite outcomes, not a superposition of them as predicted by the Schrödinger equation, and more generally how the classical world emerges from quantum theory.