Semigroup with involutionIn mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse.
RésolvanteIn mathematics, the resolvent formalism is a technique for applying concepts from complex analysis to the study of the spectrum of operators on Banach spaces and more general spaces. Formal justification for the manipulations can be found in the framework of holomorphic functional calculus. The resolvent captures the spectral properties of an operator in the analytic structure of the functional.
Calcul fonctionnelEn mathématiques, un calcul fonctionnel est une théorie permettant d'étendre à des opérateurs une fonction définie initialement uniquement pour des variables réelles ou complexes. Ces théories font désormais partie du domaine de l'analyse fonctionnelle, et sont également liées à la théorie spectrale. Si f est par exemple une fonction réelle de variable réelle, et si M est un opérateur, l'expression f(M) n'a pas de sens à proprement parler, et lui en donner un, outre qu'en général il n'y a aucune façon naturelle d'y parvenir, est un abus de notation.
Opérateur de FredholmEn mathématiques, l'opérateur de Fredholm est un concept d'analyse fonctionnelle qui porte le nom du mathématicien suédois Ivar Fredholm (1866-1927). Il s'agit d'un opérateur borné L entre deux espaces de Banach X et Y ayant un noyau de dimension finie et une image de codimension finie. On peut alors définir l'indice de l'opérateur comme Sous ces hypothèses, l'espace image de L est fermé (il admet même un supplémentaire topologique).
Théorie spectraleEn mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.
Fredholm theoryIn mathematics, Fredholm theory is a theory of integral equations. In the narrowest sense, Fredholm theory concerns itself with the solution of the Fredholm integral equation. In a broader sense, the abstract structure of Fredholm's theory is given in terms of the spectral theory of Fredholm operators and Fredholm kernels on Hilbert space. The theory is named in honour of Erik Ivar Fredholm. The following sections provide a casual sketch of the place of Fredholm theory in the broader context of operator theory and functional analysis.
Multiplication operatorIn operator theory, a multiplication operator is an operator Tf defined on some vector space of functions and whose value at a function φ is given by multiplication by a fixed function f. That is, for all φ in the domain of Tf, and all x in the domain of φ (which is the same as the domain of f). This type of operator is often contrasted with composition operators. Multiplication operators generalize the notion of operator given by a diagonal matrix.
Opérateur (mathématiques)En mathématiques et en physique théorique, un opérateur est une application entre deux espaces vectoriels topologiques. Soient E et F deux espaces vectoriels topologiques. Un opérateur O est une application de E dans F : Opérateur linéaire Un opérateur est linéaire si et seulement si : où K est le corps des scalaires de E et F. Lorsque E est un -espace vectoriel, et que (c'est un corps), un opérateur est une forme linéaire sur E.
Théorème spectralEn mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. vignette|Une illustration du théorème spectral dans le cas fini : un ellipsoïde possède (en général) trois axes de symétrie orthogonaux (notés ici x, y et z).
Isométrie partielleEn analyse fonctionnelle, une isométrie partielle est une application linéaire entre deux espaces de Hilbert dont la restriction au complément orthogonal de son noyau est une isométrie. Ce complément orthogonal du noyau est appelé le sous-ensemble initial et son image est appelée sous-ensemble final. Tout opérateur unitaire sur un espace de Hilbert est une isométrie partielle dont les espaces initial et final sont l'espace de Hilbert considéré.