Résumé
En mathématiques, un calcul fonctionnel est une théorie permettant d'étendre à des opérateurs une fonction définie initialement uniquement pour des variables réelles ou complexes. Ces théories font désormais partie du domaine de l'analyse fonctionnelle, et sont également liées à la théorie spectrale. Si f est par exemple une fonction réelle de variable réelle, et si M est un opérateur, l'expression f(M) n'a pas de sens à proprement parler, et lui en donner un, outre qu'en général il n'y a aucune façon naturelle d'y parvenir, est un abus de notation. Cependant, suivant une habitude fréquente, que ce soit en calcul opérationnel, ou en calcul matriciel par exemple, les expressions algébriques sont généralement notées sans faire la distinction, autrement dit, on parle du carré d'une matrice M (et on le note M2) en prolongeant ainsi la fonction f(x) = x2. L'idée d'un calcul fonctionnel est de donner des règles systématiques justifiant cet abus de notation pour des fonctions f plus générales. Les fonctions les plus simples pour lesquelles cela est possible sont les polynômes, ce qui donne naissance à la notion de polynôme d'opérateur, généralisant celle de polynôme d'endomorphisme : si P est un polynôme à une indéterminée X, on obtient le polynôme d'opérateur P(T) correspondant en remplaçant (formellement) X par l'opérateur T, la multiplication par la composition et les constantes k par les opérateurs d'homothétie . En dimension finie, ce calcul donne de nombreuses informations sur l'opérateur considéré. Ainsi, la famille des polynômes annulant un opérateur donné T est un idéal de l'anneau des polynômes, non trivial en dimension finie n (parce que la famille {I, T, T2...Tn} est alors liée). L'anneau des polynômes étant un anneau principal, cet idéal est engendré par un polynôme unitaire m, appelé le polynôme minimal de T. On en déduit que le scalaire α est une valeur propre de T si et seulement si α est racine de m. m permet également fréquemment de calculer l'exponentielle de T efficacement.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Aucun résultat

Personnes associées

Aucun résultat

Unités associées

Aucun résultat

Concepts associés (6)
Calcul fonctionnel
En mathématiques, un calcul fonctionnel est une théorie permettant d'étendre à des opérateurs une fonction définie initialement uniquement pour des variables réelles ou complexes. Ces théories font désormais partie du domaine de l'analyse fonctionnelle, et sont également liées à la théorie spectrale. Si f est par exemple une fonction réelle de variable réelle, et si M est un opérateur, l'expression f(M) n'a pas de sens à proprement parler, et lui en donner un, outre qu'en général il n'y a aucune façon naturelle d'y parvenir, est un abus de notation.
Multiplication operator
In operator theory, a multiplication operator is an operator Tf defined on some vector space of functions and whose value at a function φ is given by multiplication by a fixed function f. That is, for all φ in the domain of Tf, and all x in the domain of φ (which is the same as the domain of f). This type of operator is often contrasted with composition operators. Multiplication operators generalize the notion of operator given by a diagonal matrix.
Operator theory
In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra.
Afficher plus
Cours associés (1)
MATH-495: Mathematical quantum mechanics
Quantum mechanics is one of the most successful physical theories. This course presents the mathematical formalism (functional analysis and spectral theory) that underlies quantum mechanics. It is sim
Séances de cours associées (5)
Calcul fonctionnel et transformation de Borel
Couvre le calcul fonctionnel borné et mesurable, la transformation de Borel et les fonctions non bornées.
Décomposition spectrale des opérateurs auto-adjoints encombrés
Explore la décomposition spectrale des opérateurs auto-adjoints sur les espaces Hilbert.
Domaine et graphique des opérateurs non liés
Couvre les concepts fondamentaux des opérateurs non liés en physique quantique, en se concentrant sur la définition d'un calcul fonctionnel et la décomposition spectrale.
Afficher plus
MOOCs associés

Aucun résultat