Rational pricing is the assumption in financial economics that asset prices – and hence asset pricing models – will reflect the arbitrage-free price of the asset as any deviation from this price will be "arbitraged away". This assumption is useful in pricing fixed income securities, particularly bonds, and is fundamental to the pricing of derivative instruments.
Arbitrage is the practice of taking advantage of a state of imbalance between two (or possibly more) markets. Where this mismatch can be exploited (i.e. after transaction costs, storage costs, transport costs, dividends etc.) the arbitrageur can "lock in" a risk-free profit by purchasing and selling simultaneously in both markets.
In general, arbitrage ensures that "the law of one price" will hold; arbitrage also equalises the prices of assets with identical cash flows, and sets the price of assets with known future cash flows.
The same asset must trade at the same price on all markets ("the law of one price").
Where this is not true, the arbitrageur will:
buy the asset on the market where it has the lower price, and simultaneously sell it (short) on the second market at the higher price
deliver the asset to the buyer and receive that higher price
pay the seller on the cheaper market with the proceeds and pocket the difference.
Two assets with identical cash flows must trade at the same price. Where this is not true, the arbitrageur will:
sell the asset with the higher price (short sell) and simultaneously buy the asset with the lower price
fund his purchase of the cheaper asset with the proceeds from the sale of the expensive asset and pocket the difference
deliver on his obligations to the buyer of the expensive asset, using the cash flows from the cheaper asset.
An asset with a known price in the future must today trade at that price discounted at the risk free rate.
Note that this condition can be viewed as an application of the above, where the two assets in question are the asset to be delivered and the risk free asset.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Un forward rate agreement ou FRA (en français, accord à taux futur ou ATF) est un produit dérivé utilisé sur le marché monétaire. Il s'agit d'un contrat forward, négocié de gré à gré entre deux contreparties et dont l'objectif est la fixation dès aujourd'hui d'un taux in fine de référence convenu sur un principal donné, pendant une période future spécifiée. Ce taux est calculé et publié par une tierce partie, qui ne sera connu qu'à une date future.
The fundamental theorems of asset pricing (also: of arbitrage, of finance), in both financial economics and mathematical finance, provide necessary and sufficient conditions for a market to be arbitrage-free, and for a market to be complete. An arbitrage opportunity is a way of making money with no initial investment without any possibility of loss. Though arbitrage opportunities do exist briefly in real life, it has been said that any sensible market model must avoid this type of profit.
En finance, une option est un produit dérivé qui établit un contrat entre un acheteur et un vendeur. L'acheteur de l'option obtient le droit, et non pas l'obligation, d'acheter (call) ou de vendre (put) un actif sous-jacent à un prix fixé à l'avance (strike), pendant un temps donné ou à une date fixée. Ce contrat peut se faire dans une optique de spéculation sur le prix futur de l'actif sous-jacent, ou d'assurance contre une évolution défavorable de ce prix.
The objective of this course is to provide a detailed coverage of the standard models for the valuation and hedging of derivatives products such as European options, American options, forward contract
This course provides an overview of the theory of asset pricing and portfolio choice theory following historical developments in the field and putting
emphasis on theoretical models that help our unde
The aim of the course is to apply the theory of martingales in the context of mathematical finance. The course provides a detailed study of the mathematical ideas that are used in modern financial mat
This thesis investigates the relationship between investors' demand shocks and asset pricesthrough the use of data on portfolio holdings. In three chapters, I study the theory, estimation,and application of demand-based asset pricing models, which incorpor ...
Introduit la méthode généralisée des moments (GMM) en économétrie, en se concentrant sur son application dans les modèles destimation des variables instrumentales et de tarification des actifs.
We analyze and implement the kernel ridge regression (KR) method developed in Filipovic et al. (Stripping the discount curve-a robust machine learning approach. Swiss Finance Institute Research Paper No. 22-24. SSRN. https://ssrn.com/abstract=4058150, 2022 ...
In this thesis we present three closed form approximation methods for portfolio valuation and risk management.The first chapter is titled ``Kernel methods for portfolio valuation and risk management'', and is a joint work with Damir Filipovi'c (SFI and EP ...