The fundamental theorems of asset pricing (also: of arbitrage, of finance), in both financial economics and mathematical finance, provide necessary and sufficient conditions for a market to be arbitrage-free, and for a market to be complete. An arbitrage opportunity is a way of making money with no initial investment without any possibility of loss. Though arbitrage opportunities do exist briefly in real life, it has been said that any sensible market model must avoid this type of profit. The first theorem is important in that it ensures a fundamental property of market models. Completeness is a common property of market models (for instance the Black–Scholes model). A complete market is one in which every contingent claim can be replicated. Though this property is common in models, it is not always considered desirable or realistic.
In a discrete (i.e. finite state) market, the following hold:
The First Fundamental Theorem of Asset Pricing: A discrete market on a discrete probability space is arbitrage-free if, and only if, there exists at least one risk neutral probability measure that is equivalent to the original probability measure, P.
The Second Fundamental Theorem of Asset Pricing: An arbitrage-free market (S,B) consisting of a collection of stocks S and a risk-free bond B is complete if and only if there exists a unique risk-neutral measure that is equivalent to P and has numeraire B.
When stock price returns follow a single Brownian motion, there is a unique risk neutral measure. When the stock price process is assumed to follow a more general sigma-martingale or semimartingale, then the concept of arbitrage is too narrow, and a stronger concept such as no free lunch with vanishing risk must be used to describe these opportunities in an infinite dimensional setting.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The aim of the course is to apply the theory of martingales in the context of mathematical finance. The course provides a detailed study of the mathematical ideas that are used in modern financial mat
This course provides an overview of the theory of asset pricing and portfolio choice theory following historical developments in the field and putting
emphasis on theoretical models that help our unde
Rational pricing is the assumption in financial economics that asset prices – and hence asset pricing models – will reflect the arbitrage-free price of the asset as any deviation from this price will be "arbitraged away". This assumption is useful in pricing fixed income securities, particularly bonds, and is fundamental to the pricing of derivative instruments. Arbitrage is the practice of taking advantage of a state of imbalance between two (or possibly more) markets. Where this mismatch can be exploited (i.
L'évaluation financière est l'estimation de la valeur (c'est-à-dire du prix potentiel): des actifs et engagements financiers (actions, obligations, options, contrats d'épargne) et des entreprises évaluation d'entreprise) Tout placement financier étant fait dans une optique future, les principaux paramètres d’estimation de la valeur du placement sont les gains que l'on attend et les risques que l'on perçoit. finance, actif financier, évaluation du prix d'une action, évaluation d'option, évaluation financière
Les mathématiques financières (aussi nommées finance quantitative) sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant les opérations financières d'une certaine durée (emprunts et placements / investissements) et notamment les marchés financiers. Elles font jouer le facteur temps et utilisent principalement des outils issus de l'actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel.
Introduit la méthode généralisée des moments (GMM) en économétrie, en se concentrant sur son application dans les modèles destimation des variables instrumentales et de tarification des actifs.
Explique la détermination des prix de l'état d'équilibre dans la tarification des actifs par le biais de la compensation du marché de la consommation et des contraintes budgétaires.
Les séries couvrent les théories de la tarification des actifs, l'optimisation des variations moyennes, les prix de l'État et les mesures sans risque.
We study the effects of takeover feasibility on asset prices and returns in a unified framework. We show theoretically that takeover protections increase equity risk, stock returns, and bond yields by removing a valuable put option to sell the firm, notabl ...
This paper reviews the mortgage-backed securities (MBS) market, with a particular emphasis on agency residential MBS in the United States. We discuss the institutional environment, security design, MBS risks and asset pricing, and the economic effects of m ...
In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...