Rayon spectralSoit un endomorphisme sur un espace de Banach complexe , on appelle rayon spectral de , et on note , le rayon de la plus petite boule fermée de centre 0 contenant toutes les valeurs spectrales de . Il est toujours inférieur ou égal à la norme d'opérateur de . En dimension finie, pour un endomorphisme de valeurs propres complexes , le rayon spectral est égal à . Par conséquent, pour toute norme matricielle N, c'est-à-dire toute norme d'algèbre sur (respectivement ) et pour toute matrice A dans (respectivement ), .
Algèbre de JordanEn algèbre générale, une algèbre de Jordan est une algèbre sur un corps commutatif, dans laquelle l'opération de multiplication interne, a deux propriétés : elle est commutative, c’est-à-dire que elle vérifie l'identité suivante, dite identité de Jordan : . Une algèbre de Jordan n'est donc pas associative en général ; elle vérifie toutefois une propriété d’associativité faible, car elle est à puissances associatives et satisfait d’office à une généralisation de l'identité de Jordan : en notant simplement le produit de m termes , on a, pour tous les entiers positifs m et n, .
Semigroup with involutionIn mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse.
State (functional analysis)In functional analysis, a state of an operator system is a positive linear functional of norm 1. States in functional analysis generalize the notion of density matrices in quantum mechanics, which represent quantum states, both . Density matrices in turn generalize state vectors, which only represent pure states. For M an operator system in a C*-algebra A with identity, the set of all states of M, sometimes denoted by S(M), is convex, weak-* closed in the Banach dual space M*.
Baer ringIn abstract algebra and functional analysis, Baer rings, Baer *-rings, Rickart rings, Rickart -rings, and AW-algebras are various attempts to give an algebraic analogue of von Neumann algebras, using axioms about annihilators of various sets. Any von Neumann algebra is a Baer *-ring, and much of the theory of projections in von Neumann algebras can be extended to all Baer *-rings, For example, Baer *-rings can be divided into types I, II, and III in the same way as von Neumann algebras.
Isométrie partielleEn analyse fonctionnelle, une isométrie partielle est une application linéaire entre deux espaces de Hilbert dont la restriction au complément orthogonal de son noyau est une isométrie. Ce complément orthogonal du noyau est appelé le sous-ensemble initial et son image est appelée sous-ensemble final. Tout opérateur unitaire sur un espace de Hilbert est une isométrie partielle dont les espaces initial et final sont l'espace de Hilbert considéré.