Given two elliptic curves and the degree of an isogeny between them, finding the isogeny is believed to be a difficult problem—upon which rests the security of nearly any isogeny-based scheme. If, however, to the data above we add information about the beh ...
We initiate the study of certain families of L-functions attached to characters of subgroups of higher-rank tori, and of their average at the central point. In particular, we evaluate the average of the values L( 2 1 , chi a )L( 21 , chi b ) for arbitrary ...
Let G be a finite subgroup of SU(4) such that its elements have age at most one. In the first part of this paper, we define K-theoretic stable pair invariants on a crepant resolution of the affine quotient C4/G, and conjecture a closed formula for their ge ...
Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect ...
The classical Lagrangian of the Standard Model enjoys the symmetry of the full conformal group if the mass of the Higgs boson is put to zero. This is a hint that conformal symmetry may play a fundamental role in the ultimate theory describing nature. The o ...
The Cremona group is the group of birational transformations of the complex projective plane. In this paper we classify its subgroups that consist only of elliptic elements using elementary model theory. This yields in particular a description of the struc ...
Donor-acceptor (D-A) copolymers have shown great potential for intramolecular singlet fission (iSF). Nonetheless, very few design principles exist for optimizing these systems for iSF, with very little knowledge about how to engineer them for this purpose. ...
Given a group Gamma, we establish a connection between the unitarisability of its uniformly bounded representations and the asymptotic behaviour of the isoperimetric constants of Cayley graphs of Gamma for increasingly large generating sets. The connection ...
We study actions of groups by orientation preserving homeomorphisms on R (or an interval) that are minimal, have solvable germs at +/-infinity and contain a pair of elements of a certain dynamical type. We call such actions coherent. We establish that such ...
Ghys and Sergiescu proved in the 1980s that Thompson's group T, and hence F, admits actions by C-infinity diffeomorphisms of the circle. They proved that the standard actions of these groups are topologically conjugate to a group of C-infinity diffeomorphi ...